

Name of Institute: Indus Institute of Sciences, Humanities and Liberal Studies Name of Faculty: Department of Languages (English)

Course code: EN0211

Course name: Business Communication and Presentation Skills

Pre-requisites: NA Credit points: 03 Offered Semester: 02

Course Coordinator (weeks 12)

Full Name: Dr Mamta Pillai, Assistant Professor & Head, Department of Languages

Department with siting location: Computer Lab, Ground Floor, Main Building

Telephone: 9924241816

Email: mamtapillai.gd@indusuni.ac.in

Course Lecturer (weeks 12)

Full name: Ms. Pranjal Bhatt/ Ms. Foram Patel/Ms. Nidhi Singh Department with siting location: Equinox Lab, Grd Floor (MB)

Telephone: 9429296329/9537384053/8160976525

Email:

<u>pranjalbhatt.gd@indusuni.ac.in/forampatel.ishls@indusuni.ac.in/nidhisingh.ishls@indusuni</u>.ac.in

Consultation times: 4 to 5PM from Monday to Friday

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. To gain the knowledge of the various subjects with the distinctive, integrative skills and abilities such that students attain various skills to formulate, solve and analyze engineering problems and become quality graduate engineers.
- 2. To develop abilities of life-long learning, effective communication skills, individual & team work for having competence in multidisciplinary approach to relate engineering issues to broader social and human context.
- 3. To develop the understanding of ethics, professionalism, safety and sustainability that makes them leaders & contributors to the society.
- 4. To develop basic writing skills.
- 5. To utilize the technical skills necessary for reading and writing.
- 6. To be able to communication skills in both technical and professional contexts

Course Outcomes (CO):

- CO 1: To enable student understanding of appropriate communication styles according to the social, business, professional and educational situations. [BT-2]
- CO 2: To express, verbally and in written, analysis of topics related to engineering and other allied fields. [BT-2]
- **CO 3:** To analyze a given situation and illustrate the situation through depiction in the written format using English Language Skills. [BT-3]
- CO 4: To support ideas through logical development of arguments in the written form through the use of essays and letter writing. [BT-5]
- **CO 5:** To prepare documents related to professional employability. [BT-6]
- CO 6: To design visually appealing and theoretical sound presentations as a medium of corporate communication. [BT-6]

Course Outline

(Key in topics to be dealt)

- 1. Business Communication skills
- 2. Presentation Skills
- 3. Basic paragraph Development and maintaining coherence
- 4. Reading Skills

Method of delivery

- 1. Communicative Language Teaching (Learner Centric)
- 2. Face to face lectures
- 3. Task Based Language Learning
- 4. The Lexical Approach

Study time

03 Hours

CO-PO Mapping (PO: Program Outcomes)

	P01	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	1	2	1	-	1	2	3	-	2
CO2	-	2	1	1	1	1	-	1	3	3	1	2
CO3	-	3	1	1	2	1	-	2	3	3	1	2

3- Highly Mapped

¹⁻Lightly Mapped 2- Moderately Mapped

Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

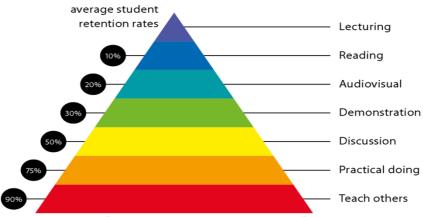


Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies.	2 Information literacy, gathering & processing

Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible	10 Sustainability, societal &
Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	environmental impact

Practical work: NIL

(Mention what practical work this Course involves)

Lecture/tutorial times

(Give lecture times in the format below)

(1Hour theory and 2Hours practical per week) As per the Master Time-Table of FY B. Tech Year -2021

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work NIL

Text books

NIL

Additional Materials

- Fred Luthans, Organizational Behaviour, McGraw Hill
- Lesikar and petit, Report writing for Business
- M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill
- Wallace and masters, Personal Development for Life and Work, Thomson Learning
- Hartman Lemay, Presentation Success, Thomson Learning
- Malcolm Goodale, Professional Presentations
- Farhathullah, T. M. Communication skills for Technical Students
- Michael Muckian, John Woods, The Business letters Handbook
- Herta A. Murphy, Effective Business Communication
- Lehman, Dufrene, Sinha BCOM, Cengage Learning

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Internal Evaluation Criteria:

Mid Semester Exam(MSE) 40 marks
Attendance 05 (80%)
Simulation Tasks 15 Marks

External Evaluation Criteria:

End Semester Exam(ESE) 40 marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction & Communicative Activity	1	Discussion
Weeks 2	Presentation Skills	3	Lecture
Week 3	Business Communication		Lecture
Week 4	Organizational Behavior	2	Discussion
Week 5	Developing Paragraph	2	Writing Pair Task
Week 6	Understanding Topic sentence, Unity and Coherence	1	Handouts
Week 7	Writing Letters	1	Writing Exercises
Week 8	Writing Emails	1	Writing Exercises
Week 9	Contrastive and Comparative Essays	1	Writing Exercises
Week 10	Presentation Seminar	2	Group Activity
Week 11	Presentation Seminar	2	Group Activity
Week 12	Declamation	2	Public Speaking

Syllabus Document

	Subject: Business Communication & Presentation Skills								
Program:	B.Tech. A	II Branche	S	Su	Subject Code: EN0211 Semester				
	Teaching	Scheme		Ex	amination Eva	luation Schem	ne		
				University	University	Continuous	Continuous	Total	
				Theory	Practical	Internal	Internal		
				Examination	Examination	Evaluation	Evaluation		
						(CIE)-	(CIE)-		
Lecture	Tutorial	Practical	Credits			Theory	Practical		
1	2	0	3	40	0	60	0	100	

Course Objectives:

- To orient students about the varied uses of business communication.
- Under the importance of personality and its reflection in communication.
- Train students to develop business correspondence in writing and presentation skills.

COURSE CONTENT

Unit 1: Business Communication

- Business Communication- Importance
- Information Age and Communication/Social Media
- Organizational Communication for Engineers
- Common Barriers in Professional Communication/Role Play
- Organizational Etiquettes

Unit 2: Presentation Skills

- Planning, Preparing and Practice
- Audience Interaction
- Importance of AV Aids
- Best Presentation Videos
- Group Presentations/Pair Presentations/Teacher Review
- Group Presentations/Pair Presentations/ Peer Review

Unit 3: Writing Skills

- Mind-mapping and Planning
- Paragraph Development with 7 c's
- Picture Elicitation

- Contrastive and Comparative Essays
- Completing a Story and Describing Situations

Unit 4: Writing Skills II

- Composing Drafts
- Letters / Good, Bad & Neutral Messages
- Emails/ Sample Analysis
- Creating a Blog

Reference Books:

- Fred Luthans, Organizational Behaviour, McGraw Hill
- Lesikar and petit, Report writing for Business
- M. Ashraf Rizvi, Effective Technical Communication, McGraw Hill
- Wallace and masters, Personal Development for Life and Work, Thomson Learning
- Hartman Lemay, Presentation Success, Thomson Learning
- Malcolm Goodale, Professional Presentations
- Farhathullah, T. M. Communication skills for Technical Students
- Michael Muckian, John Woods, The Business letters Handbook
- Herta A. Murphy, Effective Business Communication
- Lehman, Dufrene, Sinha BCOM, Cengage Learning

Web resources/ MOOCs:

- Business Conversation Rule 1 :https://www.youtube.com/watch?v=wB8mr4iViy0
- Business English Conversations Rule 2: https://www.youtube.com/watch?v=wB8mr4iViy0
- Business English Conversations 3: https://www.youtube.com/watch?v=wB8mr4iViy0
- Business English Conversations Rule 4: https://www.youtube.com/watch?v=wB8mr4iViy0
- Business English Conversations Rule 5: https://www.youtube.com/watch?v=wB8mr4iViy0
- English Presentation Video: https://www.youtube.com/watch?v=wB8mr4iViy0
- Powerful Presentation Skills: Body Language: https://www.youtube.com/watch?v=wB8mr4iViy0
- Make Body Language Your Superpower: https://www.youtube.com/watch?v=wB8mr4iViy0
- Make a Presentation Like Steve Jobs: https://www.youtube.com/watch?v=wB8mr4iViy0

Name of Institute: Indus Institute of Sciences, Humanities & Liberal Studies (IISHLS)

Name of Faculty: Mr. Bharat Prajapati

Course code: CH0011

Course name: Engineering Chemistry

Pre-requisites: 10+2

Credit points:

L	Т	P	С
3	0	2	4

Offered Semester: I and II

Course Coordinator (weeks XX - XX)

Full name: Prof. Bharat Prajapati

Department with siting location: Chemistry Department

EDC Cell, 4th Floor, Bhanvar Building

Telephone: EXT: 3404

Email: bharatprajapati.gd@indusuni.ac.in

Consultation times: Friday (02:25 – 04:15)

Course Lecturer (weeks xx - XX)

Full name: Mr.. Bharat Prajapati

Department with siting location: Chemistry Department

B-404, 4th Floor, Bhanvar Building

CH0011, 2nd Semester: 2022 Page 1 of 21

Telephone: EXT: 3404

Email: bharatprajapati.gd@indusuni.ac.in

Consultation times: Friday (02:25 – 04:15)

Full name: Dr. Chetana Deoghare

Department with siting location: Chemistry Department

EDC Cell, 4th Floor, Bhanvar Building

Telephone: EXT: 3414

Email: chetanadeoghare.gd@indusuni.ac.in

Consultation times:04:00PM to 05:00 PM

Full name: **Dr. Paras Patel**

Department with siting location: Chemistry Department

EDC Cell, 4th Floor, Bhanvar Building

Telephone: EXT: 3404

Email: paraspatel.gd@indusuni.ac.in

Consultation times: 04:00PM to 05:00 PM

Full name: Dr. Nikunj Valand

Department with siting location: Chemistry Department

Faculty Room, 4th Floor

Telephone: EXT: 3425

Email: nikunjvaland.gd@indusuni.ac.in

Consultation times: 04:00PM to 05:00 PM

CH0011, 2nd Semester: 2022 Page 2 of 21

Full name: Dr. Ujwal Trivedi

Department with siting location: Chemistry Department

Faculty Room, 4th Floor

Telephone: EXT: 3425

Email: ujwaltrivedi.ishls@indusuni.ac.in

Consultation times: 04:00PM to 05:00 PM

Full name: Dr. Rawesh Kumar

Department with siting location: Chemistry Department

Chemistry lab, 2nd Foor

Telephone: EXT: 3214

Email: raweshkumar_ishls@indusuni.ac.in

Consultation times: 04:00PM to 05:00 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. To recall the various basic concepts of chemistry and green chemistry with direct application to the built environment.
- 2. To understand the basics of energy system, electrochemistry, surface chemistry and their practical applications.

CH0011, 2nd Semester: 2022 **Page 3 of 21**

- 3. To aware about various smart materials, composites of cement and ceramics materials and their applications.
- 4. To apply consciousness about the quality of water for industrial process, problems and troubleshooting techniques
- 5. To apply knowledge about the corrosion for industrial process, problems and its prevention techniques.

Course Outcomes (CO)

- **CO1.** To understand the fundamental and advance concepts of chemistry applied in the various branches of engineering. [BT-2]
- CO2. To analyze the various parameters of energy system and application of the catalyst in various fields of engineering. [BT-4]
- **CO3.** To illustrate various kind of advance materials and composite materials and there application alloys in respective areas of expertise. [BT-4]
- **CO4.** To identify problems caused by impurities of water as well as troubleshooting techniques for water purification for industry as well as potable water. [BT-1]
- **CO5.** To evaluate various kind of corrosion process and their prevention process by various chemical techniques. [BT-5]
 - 6. To design volumetric titration for the determination of acidic and basic species. [BT-6]

Course Outline

(Key in topics to be dealt)

- **❖** General Chemistry
- **❖** Green Chemistry
- **&** Energy System
- ***** Catalyst and Surface Chemistry
- **Advance Engineering Materials and its Applications**
- ***** Cement & Ceramic Materials
- ***** Water Chemistry
- ***** Corrosion and its prevention

Method of delivery

(Face to face lectures, , Active Learning Techniques)

CH0011, 2nd Semester: 2022 Page 4 of 21

Study time

(How many hours per week including class attendance)

07 Hours (03-Theory+04 Practical) Hours per week

CO-PO Mapping (PO: Program Outcomes)

	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2
CO1	3	3	-	2	-	1	1	-	-	-	-	-
CO2	2	2	1	-	-	-	2	-	-	-	-	-
CO3	2	2	-	1	2	-	2	-	-	-	-	-
CO4	3	3	1	-	-	2	2	-	2	-	-	-
CO5	2	2	2	1	-	2	2	-	-	-	-	-
CO6	3	3	2	1	1	2	2	-	1	-	-	-

Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

CH0011, 2nd Semester: 2022 Page 5 of 21

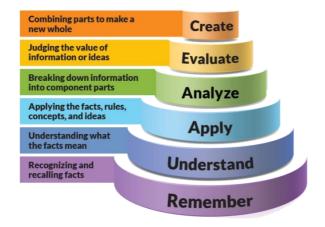


Figure 1: Blooms Taxonomy

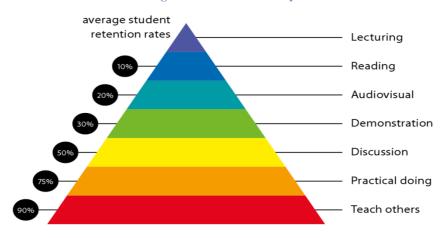


Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities			
Informed	1 Professional knowledge, grounding &			
awareness:- Student's will gain know				
	about chemistry subject in the both areas			

CH0011, 2nd Semester: 2022 Page 6 of 21

Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.

i.e. theory well practical's. as as Professionally students will know how chemistry is important in our daily life as well as to build up any industry. Students will be having knowledge/awareness chemicals' such as how to use them and hazardous they are for the environment.

Independent learners

Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.

2 Information literacy, gathering processing:- Student's will be able identify the problems happening in the society as well as in the industry such as water quality, loss due to corrosion, pollutant coming from cement plant etc. with this basic information they will be having ability to gather the possible solutions.

Problem solvers

Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible. thorough, innovative and aim for high standards.

4 Problem solving skills:

Chemistry education provides students with the tools to solve problems. This means that students should be able to apply the scientific method: define a problem clearly, develop testable hypotheses, design and execute experiments, analyze data using appropriate statistical methods, and draw appropriate conclusions.

Students should be able to integrate knowledge across chemical sub disciplines and apply this knowledge to solve problems. In the laboratory, in addition to the characteristics described above, students understand the fundamental should uncertainties in experimental measurements.

Effective communicators

Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.

5 Written communication:-

Students should be able to retrieve specific information from the chemical literature, critically evaluate technical articles, and chemical manage many types of information. Students should develop proficiency with electronic searching of

Page 7 of 21

CH0011, 2nd Semester: 2022

appropriate technical databases, including structure-based searching.

- **6 Oral communication:-** Students should orally able to use communication technology such as computerized presentations as well as software for word processing, chemical-structure drawing, and poster preparation and research paper presentation to any conferences.
- 7 Teamwork:- Students should be able to Solve scientific problems often involves working in disciplinary and multidisciplinary teams. This is especially true in industry and increasingly in academic settings. Students should learn to work productively with a diverse group of peers in classroom and laboratory activities. Students should be able to lead portions of an activity or be effective followers, as dictated by the situation. Peer- and self-assessment is often an effective way to evaluate student contributions to group activities.

Responsible

Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.

10 Sustainability, societal & environmental impact: With this course students will know/ aware/ learn about the sustainable use of green products, proper management renewable of energy resources, and to find out new energy replacement sources. Students will be socially aware about the sources of pollutant that damages the water, soil, air etc. So they will be having capabilities/ knowledge how to tackled/ deal with different types of pollutions.

CH0011, 2nd Semester: 2022 Page 8 of 21

Practical work:

(Mention what practical work this Course involves)

]	1	Determination of the alkalinity of unknown water sample.
2	2	Estimation of hardness of water sample by EDTA method.
3	3	Estimation of dissolved oxygen in water sample.
۷	1	Determination of metal ions (Ca^{2+}/Zn^{2+}) from the mixture by EDTA titration.
4	5	Determination of metal ions (Pb^{2+}/Mg^{2+}) from the mixture by EDTA titration.
6	5	Determination of strength of Acid or Base by pH meter.
7	7	Determination of strength of Acid or Base by Conductometer.
8	3	To calculate the Acid value of the given sample of oil.
Ģ)	Determination of the saponification value of a given oil sample.
1	0	Adsorption of acetic acid by charcoal.
1	1	To determines the specific gravity of cement.
1	2	Determination of available lime (as CaO) in cement

Lecture/tutorial times

13

(Give lecture times in the format below)_

Determination of sulphates in cement.

Example:For Automobile Engineering		
Lecture:		
Lab:		

Attendance Requirements

The University norms states that it is the responsibility of student s to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

- 1. Dara, S.S., Umare S.S.; A Text Book of Engineering Chemistry (Twelfth edition); S. Chand. Co. 2014, ISBN: 8121903599.
- 2. P. Atkins, J.D. Paula, Physical Chemistry, Oxford University Press, 2017, ISBN :9780198769866.
- 3. A. J. Mee, Physical Chemistry, 6th Ed. English Language Book Society and Heinemann Educational Books Ltd. London, 1962.ISBN: 0435665766
- 4. Douglas A. Skoog, Donald M. West, Fundamentals of Analytical Chemistry, Cengage Learning, Ninth Edition, 2014.ISBN: 9780495558347
- 5. Puri B. R., Sharma L. R., Pathania M.S; Principles of Physica Chemistry; Vishal Publishing Co. (46nd Edition), 2013.ISBN :9789382956013.
- 6. Arthur E. Morris, Gordon Geiger and H. Alan Fine, Handbook on Material

& Energy Balance Calculations in Material Processing, Third Edition, 2011.

ISBN:9781118065655

Text books

- 1. 1. P.C. Jain, M. Jain, Engineering Chemistry 15th edition, Dhanpat Rai Publishing Company, New Delhi, 2005.ISBN 8187433175
- 2. Shashi Chawla, Textbook of Engineering Chemistry, Dhanpat Rai Publishing Co.2004.ISBN 9788126519880

CH0011, 2nd Semester: 2022 Page 10 of 21

Additional Materials

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

```
    Theory
    CIE_(60 marks)
    Mid Semester Examination = 40 marks
    Internal Evaluation = 20 marks
    (Attendance = 5 Marks
    Presentation = 5 Marks
    Assignment or Case studies = 10 Marks)
    ESE (40 marks)
    Theory Exam = 40 marks
    Practical
    CIE (60 Marks)
    Viva exam = 30 marks
```

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

CH0011, 2nd Semester: 2022 Page 11 of 21

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

CH0011, 2nd Semester: 2022 Page 12 of 21

Course schedule (subject to change)

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Unit-4 CH-1-Water Chemistry Sources of water, Soft Water & Hard Water, Types of hardness, Units of hardness measurement, I.S.I. specification of drinking water, Impurities in water, Disadvantages of hard water,	4	Chalk and Talk
Weeks 2	Determination of water hardness by EDTA method, Alkalinity of water and its significance, Significance and determination of COD and BOD. Boiler feed water, Scale and sludge formation in boilers and pipes etc,	4	Chalk and Talk
Week 3	Boiler Corrosion, Water softening through Soda lime process, Zeolite Process & Ion-exchange Process, Characteristics of Potable water, Sources and quality of drinking water, Treatment of water for domestic use: Filtration, Coagulation, Sedimentation and Disinfection, Desalination through Electro Dialysis & Reverse Osmosis, Numerical problems.	4	Chalk and Talk
Week 4	Unit-4 CH-2 Corrosion and its prevention. Definition and types of corrosion water line, pitting, stress, erosion and soil corrosion, Caustic embrittlement, Factors affecting on corrosion (Metallic and Environmental), Pourbaix diagram,	5	Chalk and Talk

CH0011, 2nd Semester: 2022 Page 13 of 21

Week 5	Protective measures to control Corrosion, Sacrificial anode and Cathode process for corrosion control., Dry (chemical corrosion), Wet (Electrochemical corrosion) and its mechanisms; Types of electrochemical corrosion, (differential aeration, galvanic, concentration cell.	5	Chalk and Talk Surprised Test-1
Week 6	Unit-1 CH-1- General Chemistry Introduction to Chemical Sciences, Basics includes: Periodicity, Types of reactions, various acid base concepts, Electrochemistry, Electrochemical Cell, Galvanic Cell, Electrolytic Cell, Types of electrodes,	1	Chalk and Talk
Week 7	Single electrode potentials, Reference Electrodes, Standard Hydrogen Electrode (SHE), Standard Calomel Electrode (SCE),	1	Chalk and Talk
Week 8	Glass Electrode, Quinhydrone Electrode, Nernst equation, Conductance, Cell constant and its determination, Conductometric titrations, Numerical. Unit-1-CH-2-Green Chemistry Introduction, Principles & Concepts of Green Chemistry,	1,6	Chalk and Talk
Week 9	Importance of green synthesis, methods for green synthesis, application of green synthesis, Greenhouse concepts	1	Chalk and Talk
Week 10	Unit-2 CH-1- Energy System Introduction, classification of fuel, characteristics of good fuel, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems.	2	Chalk and Talk

CH0011, 2nd Semester: 2022 Page 14 of 21

Week 11	Power alcohol, unleaded petrol and biodiesel, Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Li-ion batteries, Overview of Oil and lubricants	2,6	Chalk and Talk Planned Test-2
Week 12	Unit-2 CH-2 Catalyst and Surface Chemistry Catalysis: Types of catalysis, Positive & Negative catalysis, Homogeneous and Heterogeneous catalysis, Characteristics of Catalytic action, Poisoning of catalysis, Promoters, Auto Catalysis, Acid-Base Catalysis, Theories of Catalysis process, Catalysis of metal salts Criteria for choosing the catalyst for industrial process , Industrial Applications of Catalysts.	2	Chalk and Talk
Week 13	Adsorption: Introduction, Terminology, Factors affecting the adsorption of Gases by Solids, Types of adsorption, adsorption isotherm: Freundlich adsorption isotherm, Langmuir adsorption Isotherm, Determination of surface area by BET method, Application of adsorption.	2	Chalk and Talk
Week 14	Unit-3-CH-1 Advance Engineering Materials and its Applications Liquid Crystals: Introduction, classification and applications, Organic Electronic Materials: Introduction, types and applications, Chemical Sensors: Introduction, types and applications, Ionic Liquids: Introduction and applications, Chromic Materials: Introduction, types and applications, Synthesis and application of Nano materials.	3	Chalk and Talk

CH0011, 2nd Semester: 2022

Week 15	Unit-3 CH-2 –Cement & Ceramic materials Cement: Cement: Introduction, Cement and its classification, Manufacture, chemical composition, setting and hardening, I.S.I specification, physical properties of Portland cement, Lime and Plaster of Paris	3	Chalk and Talk
Week 16	Ceramics and Refractories :Introduction, Refractories, Properties of Refractories, Some important high refractory materials, Glass, Porcelain.	3	Chalk and Talk

CH0011, 2nd Semester: 2022 Page 16 of 21

Subject: Engineering Chemistry								
Program: I	B.Tech. All			Subject Code: CH0011 Semester:				
	Teaching	Scheme		Ex	Examination Evaluation Scheme			
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	2	4	40	40	60	60	200

Course Outcomes:

- CO 1.To understand the fundamental and advance concepts of chemistry applied in the various branches of engineering. [BT-2]
- CO 2.To analyze the various parameters of energy system and application of the catalyst in various fields of engineering. [BT-4]
- CO 3.To illustrate various kind of advance materials and composite materials and there application alloys in respective areas of expertise. [BT-4]
- CO 4.To identify problems caused by impurities of water as well as troubleshooting techniques for water purification for industry as well as potable water. [BT-1]
- CO 5.To evaluate various kind of corrosion process and their prevention process by various chemical techniques. [BT-5]
- CO 6.To design volumetric titration for the determination of acidic and basic species. [BT-6]

CONTENTS

UNIT-I

[12 hours]

General Chemistry

Introduction to Chemical Sciences, Basics includes: Periodicity, Types of reactions, various acid base concepts, Electrochemistry, Electrochemical Cell, Galvanic Cell, Electrolytic Cell, Types of electrodes, Single electrode potentials, Reference Electrodes, Standard Hydrogen Electrode (SHE), Standard Calomel Electrode (SCE), Glass Electrode, Quinhydrone Electrode, Nernst equation, Conductance, Cell constant and its determination, Conductometric titrations, Numerical

Green Chemistry

Introduction, Principles & Concepts of Green Chemistry, Importance of green synthesis, methods for green synthesis, application of green synthesis, Greenhouse concepts

UNIT-II

[12 hours]

CH0011, 2nd Semester: 2022 Page 17 of 21

Energy System

Introduction, classification of fuel, characteristics of good fuel, determination of calorific value of solid/liquid fuel using bomb calorimeter, numerical problems. Power alcohol, unleaded petrol and biodiesel, Introduction, classification - primary, secondary and reserve batteries. Construction, working and applications of Li-ion batteries, Overview of Oil and lubricants

Catalyst and Surface Chemistry

Catalysis: Types of catalysis, Positive & Negative catalysis, Homogeneous and Heterogeneous catalysis, Characteristics of Catalytic action, Poisoning of catalysis, Promoters, Auto Catalysis, Acid-Base Catalysis, Theories of Catalysis process, Catalysis of metal salts Criteria for choosing the catalyst for industrial process, Industrial Applications of Catalysts.

Adsorption: Introduction, Terminology, Factors affecting the adsorption of Gases by Solids, Types of adsorption, adsorption isotherm: Freundlich adsorption isotherm, Langmuir adsorption Isotherm, Determination of surface area by BET method, Application of adsorption.

<u>UNIT-III</u>

[11 hours]

Advance Engineering Materials and its Applications

Liquid Crystals: Introduction, classification and applications, Organic Electronic Materials: Introduction, types and applications, Chemical Sensors: Introduction, types and applications, Ionic Liquids: Introduction and applications, Chromic Materials: Introduction, types and applications, Synthesis and application of Nano materials.

Cement & Ceramic Materials

Cement: Cement: Introduction, Cement and its classification, Manufacture, chemical composition ,setting and hardening, I.S.I specification, physical properties of Portland cement, Lime and Plaster of Paris .**Ceramics and Refractories**:Introduction, Refractories, Properties of Refractories, Some important high refractory materials, Glass, Porcelain.

UNIT-IV

[13 hours]

Water Chemistry

Sources of water, Soft Water & Hard Water, Types of hardness, Units of hardness measurement, I.S.I. specification of drinking water, Impurities in water, Disadvantages of hard water, Determination of water hardness by EDTA method, Alkalinity of water and its significance, Significance and determination of COD and BOD. Boiler feed water, Scale and sludge formation in boilers and pipes etc, Boiler Corrosion, Water softening through Soda lime process, Zeolite Process & Ion-exchange Process, Characteristics of Potable water, Sources and quality of drinking water, Treatment of water for domestic use: Filtration, Coagulation, Sedimentation and Disinfection, Desalination through Electro Dialysis & Reverse Osmosis, Numerical problems.

Corrosion and its prevention

Definition and types of corrosion water line, pitting, stress, erosion and soil corrosion, Caustic embrittlement, Factors affecting on corrosion (Metallic and Environmental), Pourbaix diagram, Protective measures to control Corrosion, Sacrificial anode and Cathode process for corrosion

CH0011, 2nd Semester: 2022 Page 18 of 21

control., Dry (chemical corrosion), Wet (Electrochemical corrosion) and its mechanisms; Types of electrochemical corrosion, (differential aeration, galvanic, concentration cell.

Text Books

- 3. P.C. Jain, M. Jain, Engineering Chemistry 15th edition, Dhanpat Rai Publishing Company, New Delhi, 2005.ISBN 8187433175
- 4. Shashi Chawla, Textbook of Engineering Chemistry, Dhanpat Rai Publishing Co.2004.ISBN 9788126519880

Reference Books

- 7. Dara, S.S., Umare S.S.; A Text Book of Engineering Chemistry (Twelfth edition); S. Chand. Co. 2014, ISBN: 8121903599.
- 8. P. Atkins, J.D. Paula, Physical Chemistry, Oxford University Press, 2017, ISBN :9780198769866.
- 9. A. J. Mee, Physical Chemistry, 6th Ed. English Language Book Society and Heinemann Educational Books Ltd. London, 1962.ISBN: 0435665766
- 10. Douglas A. Skoog, Donald M. West, Fundamentals of Analytical Chemistry, Cengage Learning, Ninth Edition, 2014.ISBN: <u>9780495558347</u>
- 11. Puri B. R., Sharma L. R., Pathania M.S; Principles of Physica Chemistry; Vishal Publishing Co. (46nd Edition), 2013.ISBN :9789382956013.
- Arthur E. Morris, Gordon Geiger and H. Alan Fine, Handbook on Material & Energy Balance Calculations in Material Processing, Third Edition, 2011. ISBN:9781118065655

Web Resources

1. General chemistry

- Electrochemistry(http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering% 20Chemistry%201/Course_home_Lec22.html,
- http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/Course_home_Lec24.html)

2. Green Chemistry

➤ (https://www.epa.gov/greenchemistry)

3. Energy System

➤ (https://www.toppr.com/guides/chemistry/combustion-anm fuel/introductionto-fuel-and-fuel efficiency/,https://nptel.ac.in/courses/121106014/31)

4. Catalyst and Surface Chemistry

(http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20Chemistry%201/Course_home_Lec36.html)

5. Advance Engineering Materials and its Applications

(https://www.youtube.com/watch?v=dm0bUBy-Utk, https://www.youtube.com/watch?v=qUEbxTkPIWI)

6. Cement & Ceramic Materials

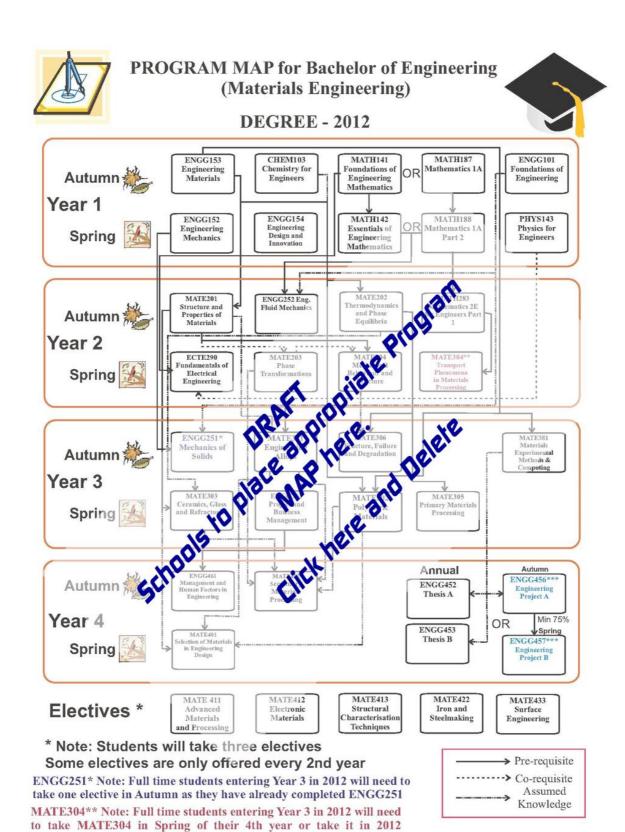
(https://www.youtube.com/watch?v=qk9P3e0l2lE)

7. Water Treatment

CH0011, 2nd Semester: 2022 Page 19 of 21

- ➤ (https://www.youtube.com/watch?v=O-MRC0dskHg,
- https://www.youtube.com/watch?v=SvCIfcovf9k)

8. Corrosion


➤ (http://www.cdeep.iitb.ac.in/webpage_data/nptel/Core%20Science/Engineering%20 Chemistry%201/Course_home_Lec25.html)

LIST OF EXPERIMENTS

Experiment	Title					
No.						
1	Determination of the alkalinity of unknown water sample.					
2	Estimation of hardness of water sample by EDTA method.					
3	Estimation of dissolved oxygen in water sample.					
4	Determination of metal ions (Ca^{2+}/Zn^{2+}) from the mixture by EDTA titration.					
5	Determination of metal ions (Pb^{2+}/Mg^{2+}) from the mixture by EDTA titration.					
6	Determination of strength of Acid or Base by pH meter.					
7	Determination of strength of Acid or Base by Conductometer.					
8	To calculate the Acid value of the given sample of oil.					
9	Determination of the saponification value of a given oil sample.					
10	Adsorption of acetic acid by charcoal.					
11	To determines the specific gravity of cement.					
12	Determination of available lime (as CaO) in cement.					
13	Determination of sulphates in cement.					

CH0011, 2nd Semester: 2022 Page 20 of 21

ENGG456***Note: If ENGG456 Engineering Project A (6cp) is done instead of a thesis, a student needs to complete 4 electives and is not eligible for honours

and defer another subject to Spring 2012

CH0011, 2nd Semester: 2022 Page 21 of 21

Name of Institute: Indus Institute of Technology and Engineering

Name of Faculty: Dr.Bansi Raja

Course code: ME0211

Course name: Engineering Graphics

Pre-requisites: None

Tea	ching Sch	neme			Examination Scheme				
					The	eory	Prac	tical	
L*	T*	P*	Cr	Hrs	CIE	ESE	CIE	ESE	TOTAL
1	0	4	3	5	60	40	60	40	200

Credit points: 3
Offered Semester: II

Course Coordinator

Full name: Dr.Bansi Raja

Department with siting location: HMT Lab,FF,Bhanwar Builiding

Telephone: 3113,

Email: bansiraja.me@indusuni.ac.in Consultation

times: Friday (9.30am to 11.00 am)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

- 1) To make students understand the conventions and the methods of engineering drawing.
- 2) To make students interpret engineering drawings using fundamental technical mathematics.
- 3) To improve visualization skills of students so that they can apply these skills in developing new products.
- 4) To improve student's technical communication skill in the form of communicative drawings.
- 5) To make students comprehend the theory of projection.

Course Outcomes (CO)

After learning the course, the students should be able to,

- 1. Understand the conventions and the methods of engineering drawing.
- 2. Interpret engineering drawings using fundamental techniques of mathematics.
- 3. Construct basic and intermediate geometry.
- 4. Improve their visualization skills so that they can apply these skills in developing new products.
- 5. Improve their technical communication skill in the form of communicative drawings.
- 6. Comprehend the theory of projection.

Course Outline

Key in topics to be dealt:

- 1. Engineering curves
- 2. Projection of various geometries.
- 3. Orthographic Projection
- 4. Isometric view.

Method of delivery

(Face to Face Lecture), PPT & Video, Self-study material, Problem Based Learning)

Study time

(How many hours per week including class attendance)

	Lecture	Tutorial	Practical
No of hours	1	0	4

CO-PO Mapping (PO: Program Outcomes)

PO/PSO		PO										
CO	1	2	3	4	5	6	7	8	9	10	11	12
CO1	3					2	1	-				
CO2	3	-	-	1	3	-	-	-	-	-	-	-
CO3	3	2	2	2	3	-	-	-	-	-	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	-
CO5	3	-	3	1	3	-	-	-	-	-	-	-
CO6	2	3	-	1	-	-	-	-	-	-	-	-

Blooms Taxonomyand Knowledge retention(For reference)

(Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

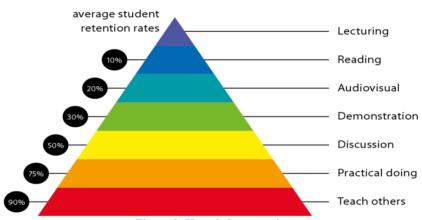


Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed	1 Professional knowledge, grounding &
Have a sound knowledge of an area of study	awareness
or profession and understand its current	
issues, locally and internationally. Know how	
to apply this knowledge. Understand how an	
area of study has developed and how it relates	
to other areas.	

ज्ञानेन प्रकाशते जगत्
INDUS
UNIVERSITY

Independent learners	2 Information literacy, gathering &
Engage with new ideas and ways of thinking	processing
and critically analyze issues. Seek to extend	
knowledge through ongoing research, enquiry	
and reflection. Find and evaluate information,	
using a variety of sources and technologies.	
Acknowledge the work and ideas of others.	
Problem solvers	4 Problem solving skills
Take on challenges and opportunities. Apply	
creative, logical and critical thinking skills to	
respond effectively. Make and implement	
decisions. Be flexible, thorough, innovative	
and aim for high standards.	
Effective communicators	5 Written communication
Articulate ideas and convey them effectively	6 Oral communication
using a range of media. Work collaboratively	7 Teamwork
and engage with people in different settings.	
Recognize how culture can shape	
communication.	
communication.	
Responsible	10 Sustainability, societal & environmental
	10 Sustainability, societal & environmental impact
Responsible	• /
Responsible Understand how decisions can affect others	• /
Responsible Understand how decisions can affect others and make ethically informed choices.	• •

Practical work: LIST OF PRACTICALS (SHEETS)

- 1. Engineering curves I (Ellipse, parabola and Hyperbola)
- 2. Engineering curves II (Cycloid, Hypocycloid, Epicycloids, Involutes, Spirals)
- 3. Projections of Points and Line
- 4. Projections of Planes
- 5. Projections of solids
- 6. Orthographic projection
- 7. Section Orthographic projection
- 8. Isometric Projection/view

Lecture/tutorial times

(Give lecture times in the format below)

As per Time Table			

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

Text books

- 1. P. J. Shah, "A Text Book of Engineering Graphics" Publication: S. Chand.
- 2. P. D. Patel, "Engineering Graphics" Publication: Mahajan

Reference Books

- 1. N. D. Bhatt, "Elementary Engineering Drawing", Charotar Publishing House, Anand
- 2. A text book of Engineering Drawing by R. K. Dhawan, S. Chand & Company Ltd., New Delhi
- 3. A text book of Engineering Drawing by P. S. Gill, S. K. Kataria & sons, Delhi
- 4. A Text Book of Machine Drawing By P. J. Shah S. Chand & Company Ltd., New Delhi

Additional Materials

http://nptel.ac.in/courses/112103019/

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

	Tentative CIE Theory 60 Marks Bifurcation	Tentative Duration
10 Marks	3 Drawing Sheets(2 drg sheet of Engg.Curves and 1 drg sheet of Projection of Plane)	After completion of each Topic
10 Marks	Assignments (Engg.Curves and Projection of Plane)	After completion of each Topic
40 Marks	Mid Sem exam	As per academic Calendar
	Tentative CIE Practical 60Marks Bifurcation	Tentative Duration
10 Marks	Lab Participation	Academic Session
20 Marks	Maximum 4 Assignments	After completion of each Topic
30 Marks	4 Drawing Sheets [Proj. Of Point and Line(1 Sheet),Orthographic and Sectional Orthographic(1 Sheet),Isometric Projection (1 Sheet)& Projection of Solids (1 sheet)]	After completion of each Topic

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Εn	ainaarina	Graphics	ME0211
	omeenno	GIADHICS	101 - 107 + 11

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment).

Course schedule (subject to change)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Week 1	Principles of Engineering Graphics andtheir Significance – Drawing Instruments and their Use – Conventions in Drawing – Lettering –	1	Assignment Submission
Week 2	BIS Conventions- Dimensioning systems – polygons-types of lines. Classification and application of Engineering Curves, Construction of different methods of Ellipse, parabola and Hyperbola.	1 , 2	Worksheet Submission
Week 3	construction of Conics, Cycloid Curves – Cycloid, Hypocycloid, Epicycloids, Involutes and Spirals.	2 , 3	Worksheet submission, Quiz
Week 4	Introduction to principal planes of projections, Projections of the points located in same quadrant and different quadrants, Projections of line with its inclination to one reference plane and with two reference planes.	3 , 4	Assignment and Worksheet Submission
Week 5	True length and inclination with thereference planes.	3 , 4	Assignment and Worksheet Submission
Week 6	Projections of planes (polygons, circle, and ellipse) with its inclination to one reference plane and with two referenceplanes, Concept of auxiliary plane method for projections of the plane.	4	Assignment and Worksheet Submission
Week 7	Classification of solids. Projections of solids (Cylinder, Cone, Pyramid, Prism) along with frustum of cone and pyramid with their inclinations to one reference plane and with two reference planes.	4 , 6	Assignment and Worksheet Submission

			UNIVERSITY
Week 8	Fundamental of projection along with classification, Projections from the pictorial view of the object on the principal planes for view from front, top and sides using first angle projection method and third angle projection	4 , 6	Assignment and Worksheet Submission, Quiz
	method.		
Week 9	Fundamental of projection along with classification, Projections from the pictorial view of the object on the principal planes for view from front, top and sides using first angle projection method and third angle projection method.	5 , 6	Assignment and Worksheet Submission, Quiz
Week 10	Introduction of section of objects, full sectional view.	4 , 5 , 6	Assignment and Worksheet Submission, Quiz
Week 11	Isometric orthographic projection. Scale, views Conversion of into isometric	5 , 6	Assignment and Worksheet Submission, Quiz
Week 12	Isometric view or drawing	4 , 6	Assignment and Worksheet Submission, Quiz

Name of Institute:IITE

Name of Faculty: Mr. Monil Salot

Course code: MME0202

Course name: Metallurgy for Non Metallurgists

Pre-requisites: None Credit points: 03
Offered Semester: 02

Course Coordinator

Full Name: Mr. Monil Salot

Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004

(GF)

Telephone: 9428600336

Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Course Lecturer

Full Name: Mr. Monil Salot

Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004

(GF)

Telephone: 9428600336

Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. Every human being particularly who are not familiar with metallurgy would be curious to know about the behavior of these metals and alloys, their applications in industries and in every walk of human life.
- 2. This course aims at providing knowledge and understanding to the students not only about the extraction of metals but also their manufacturing processes into different shapes and sizes, their properties, testing and applications.

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 1 of 11

Course Outcomes (CO)

- 1. The students will be made familiar with different types of ferrous and non-ferrous metals and their brief introduction to extraction processes from respective ores and minerals.
- 2. Refining and alloying of metals and alloys and their properties, microstructural characteristics.
- 3. Manufacturing processes such as Rolling, Forging, and Casting and welding.
- 4. Testing of metallic components destructively and non-destructively.
- 5. Heat treatment processes for their change in the microstructure and mechanical properties.
- 6. Corrosion behavior of metals and materials.

Course Outline

Proposed course mainly deal with fundamentals of metal and ores, introduction to the various fundamentals of metallurgy and what the impact of metallurgists are

Method of delivery

- Face to face lectures.
- Numerical and Simulations in Tutorials,
- Model Making
- Video Lectures When and as necessary

Study time

3 Lectures

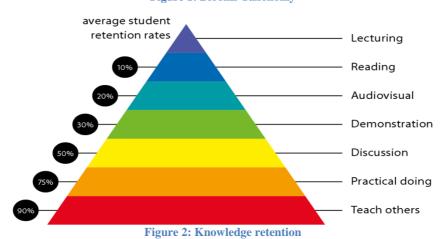
CO-PO Mapping (PO: Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	3	1	2	1	1	-	1	1	2	3
CO2	3	3	3	3	2	-	-	-	-	-	2	1
CO3	3	3	2	2	1	-	-	-	-	-	2	-
CO4	1	3	3	3	2	1	1	1	1	-	2	1
CO5	3	3	2	2	1	-	-	-	-	-	1	-
CO6	2	2	3	3	1	-	-	-	-	-	1	1

1-Lightly Mapped

2- Moderately Mapped

3- Highly Mapped



Blooms Taxonomyand Knowledge retention(For reference)

(Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection.	2 Information literacy, gathering & processing

MME0202, Semester: 4th 2022, OPEN ELECTIVE

Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work:

NA

Lecture/tutorial times

*Please Refer to Time Table for Lecture Timings, Circulated Separately

Lecture Lecture Lecture	Room LH 3 Room LH 3 Room LH 3	

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 4 of 11

Details of referencing system to be used in written work

Reference Books

- 1. Elements of Metallurgy D. Swarup.
- 2. O. P. Khanna, "Material Science and Metallurgy", Dalpat Rai Publications, 2nd Edition, 2014, ISBN: 9789383182459.

Text books

Text Books

1. Short Term Course Material on Metallurgy for Non-Metallurgists by I. I. M., Baroda Chapter.

Additional Materials

NA

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:

MSE

Assignments and Problems

Mini Project

Class Temperament and Innovative

Thinking

Final exam (closed book)

40% (week 4) Objective (1-3)

05% (week 8) Objective (1-4)

10% (due week 10) Objectives (2-5)

05% (due week 10) Objectives (1-5)

40% Objectives (1-5)

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components. *Examination and Assessment to be carried out as per university policy*

Practical Work Report/Laboratory Report:

NA

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 5 of 11

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

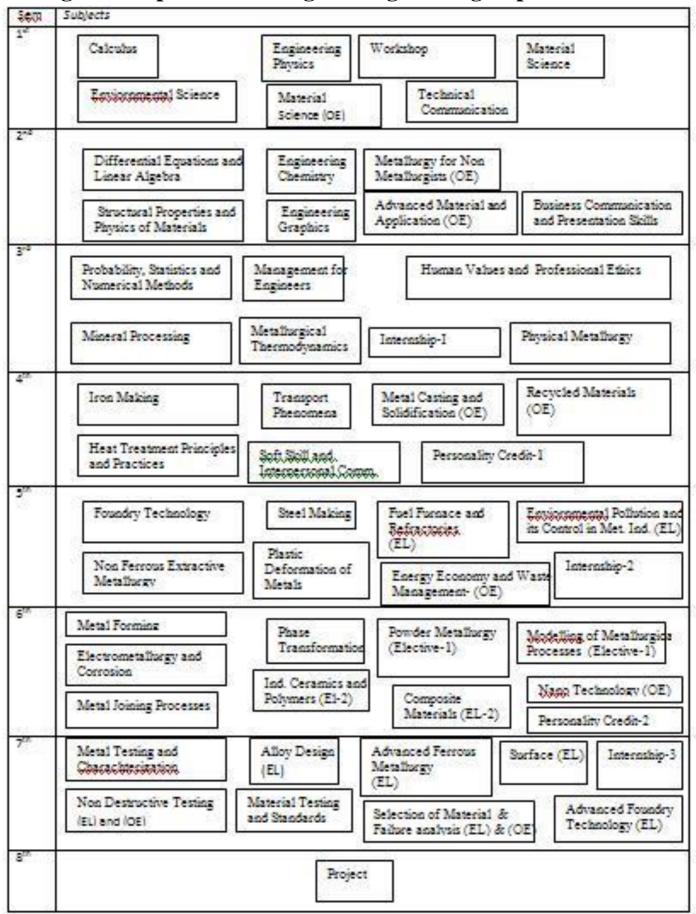
Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 6 of 11


Course schedule(subject to change)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction to Metallurgy Metal Extraction from Ores	C01, C02	BB PPT
Weeks 2	Introduction to Metallurgy Metal Extraction from Ores	C01, C02	BB PPT
Week 3	Introduction to Metallurgy Metal Extraction from Ores	C01, C02	BB PPT
Week 4	Metallography and its applications Mechanical properties of metals and alloys, Strengthening Mechanism	C01, C02,CO3	ВВ РРТ
Week 5	Metallography and its applications Mechanical properties of metals and alloys, Strengthening Mechanism	C01, C02,C03	BB PPT
Week 6	Metallography and its applications Mechanical properties of metals and alloys, Strengthening Mechanism	C01, C02,C03	BB PPT
Week 7	Heat treatment processes Manufacturing processes such as Rolling, Forging, Casting and Welding	C01, C02, C03	BB PPT
Week 8	Heat treatment processes Manufacturing processes such as Rolling, Forging, Casting and Welding	C01, C02, C03	ВВ РРТ
Week 9	Heat treatment processes Manufacturing processes such as Rolling, Forging, Casting and Welding	C01, C03	BB PPT
Week 10	Introduction to Corrosion science and engineering Treatment of steels such as Plating, Galvanizing, Aluminizing Destructive and Non-Destructive Testing	C01, C03	ВВ РРТ

				ज्ञानेन प्रकाशते जगत् I INDUS UNIVERSITY
	Week 11	Introduction to Corrosion science and engineering Treatment of steels such as Plating, Galvanizing, Aluminizing Destructive and Non-Destructive Testing	C03, C02	BB PPT
	Week 12	Introduction to Corrosion science and engineering Treatment of steels such as Plating, Galvanizing, Aluminizing Destructive and Non-Destructive Testing	C03, C02	ВВ РРТ

Program Map for Metallurgical Engineering Department

	Subject: Metallurgy for Non-Metallurgists (OE – 2)								
Program: B. Tech in Metallurgical Engineering					Subject Code:	MME0202	Semest	er: II	
Teaching Scheme (Hours per week)				Exa	mination Evaluation	on Scheme (Ma	arks)		
Lecture	Tutorial	Practical	Credits	University Theory Examinatio	Practical	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total	
3	0	0	3	16/40	0	24/60	0	100	

Course Objectives

- 1. Every human being particularly who are not familiar with metallurgy would be curious to know about the behavior of these metals and alloys, their applications in industries and in every walk of human life.
- 2. This course aims at providing knowledge and understanding to the students not only about the extraction of metals but also their manufacturing processes into different shapes and sizes, their properties, testing and applications.

CONTENTS

UNIT-I

[10 hours]

Introduction to Metallurgy Metal Extraction from Ores

UNIT-II

[10 hours]

Metallography and its applications

Mechanical properties of metals and alloys, Strengthening Mechanism

UNIT-III

[10 hours]

Heat treatment processes

Manufacturing processes such as Rolling, Forging, Casting and Welding

UNIT-IV

[10 hours]

Introduction to Corrosion science and engineering Treatment of steels such as Plating, Galvanizing, Aluminizing Destructive and Non-Destructive Testing

Course Outcomes

- 1. The students will be made familiar with different types of ferrous and non-ferrous metals and their brief introduction to extraction processes from respective ores and minerals.
- 2. Refining and alloying of metals and alloys and their properties, microstructural characteristics.
- 3. Manufacturing processes such as Rolling, Forging, and Casting and welding.
- 4. Testing of metallic components destructively and non-destructively.

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 10 of 11

- 5. Heat treatment processes for their change in the microstructure and mechanical properties.
- 6. Corrosion behavior of metals and materials.

Text Books

- 3. Elements of Metallurgy D. Swarup.
- 4. O. P. Khanna, "Material Science and Metallurgy", Dalpat Rai Publications, 2nd Edition, 2014, ISBN: 9789383182459.

Reference Books

1. Short Term Course Material on Metallurgy for Non-Metallurgists by I. I. M., Baroda Chapter.

MME0202, Semester: 4th 2022, OPEN ELECTIVE Page 11 of 11

Name of Institute: Indus Institute of Technology and Engineering

Name of Faculty: Dr.K. Santhy

Course code: MME0201

Course name: Structural Metallurgy and Physics of Materials Pre-requisites: Materials Science, Engineering Physics

Credit points: 3

Offered Semester: 2nd semester

Course Coordinator (weeks XX - XX)

Full Name: Dr.K. Santhy

Department with siting location: Materials and Metallurgical Engg., Third floor (Staff room)

Telephone: 3326

Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15 to 5 pm

Course Lecturer (weeks xx - XX)

Full Name: Dr.K. Santhy

Department with siting location: Materials and Metallurgical Engg., Third floor (Staff room)

Telephone: 3326

Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15 to 5 pm

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. To give them knowledge about diffusion in solids.
- 2. To teach them basics on nucleation and growth and its applications.
- 3. To teach them about crystal defects in metallic materials their origin, causes and remedial measure.
- 4. To provide basic knowledge about properties of materials such as electrical and thermal Conductivity, magnetism, dielectric properties.

Course Outcomes (CO)

CO 1: List the types of bonds and its properties. [BT-1]

CO 2: Differentiate isotropy and anisotropy, homogeneous and heterogeneous, amorphous and crystalline solids, polycrystalline and single crystal. [BT-2]

CO 3: Sketch the slip direction and plane on simple structure. [BT-3]

CO 4: Analyze the properties of metal, polymer and ceramics based on bonding. [BT-4]

CO 5: Compare ferromagnetism, diamagnetism and paramagentism. [BT-5]

CO6: Design a new material based on the knowledge of bonding, crystal structure and properties. [BT-6]

MME0201, 2nd Semester: 2021 Page 1 of 11

Course Outline

(Key in topics to be dealt)

- Bonding related to materials
- Slip plan and slip direction
- Plastic deformation
- · Magnetism.

Method of delivery

(teaching, self study material, Active Learning Techniques)

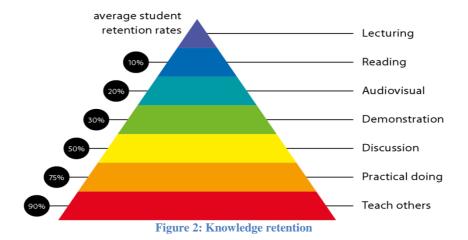
Study time

(How many hours per week including class attendance)

3 hrs per week

CO-PO Mapping (PO: Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	-	-	-	-	-	-	-	-	3
CO2	3	2	2	1	1	ı	-	-	1	1	-	1
CO3	3	2	3	-	-	-	-	-	-	-	-	1
CO4	3	3	3	1	-	-	-	-	-	-	-	1
CO5	3	3	1	1	ı	ı	1	1	1	ı	-	1
CO6	3	2	3	2	- 1	- 1	-	-	-	-	_	2


Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in	7 Teamwork

MME0201, 2nd Semester: 2021 Page 3 of 11

different settings. Recognize how culture	
can shape communication.	
Responsible	10 Sustainability, societal &
Understand how decisions can affect	environmental impact
others and make ethically informed	•
choices. Appreciate and respect diversity.	
Act with integrity as part of local, national,	
global and professional communities.	

Practical work:

(Mention what practical work this Course involves)

Lecture/tutorial times

(Give lecture times in the format below)

Example:		
Lecture	Monday	10.00 – 11.00 am
Lecture	Thursday	9.00 – 10.00 am
Lecture	Friday	9.00 – 10.00 am

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

- 1. C. S. Barret & T. B. Massalski, "Structure of Metals Crystallographic Methods, Principles & Data", McGraw-Hill Book Company, 3rd Edition, 1966, ISBN: 9780070038158.
- 2. A. H. Cottrell, "Theoretical Structural Metallurgy", The English Language Book Society & Edward Arnold (Publishers) Ltd., 2nd Edition, 1964, OCLC: 959782723.
- 3. B. D. Cullity, "Elements of X-ray Diffraction", Pearson New International, 3rd Edition, 2014, ISBN: 9781292040547.
- 4. R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, "Physical Metallurgy Principles", Stamford CT: Cengage Learning, 4th Edition, 2010, ISBN: 9780495438519.

MME0201, 2nd Semester: 2021 Page 4 of 11

Additional Materials

Reference Books

1. V. Raghavan, "Materials Science & Engineering", Prentice-Hall of India Pvt. Ltd, 6th Edition, 2015, ISBN: 9788120350922.

Web Resources

1. MIT Open Courseware on "Materials Science and Engineering"

(http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/)

2. EdX Course on "Materials Science and Engineering"

(https://www.edx.org/course/materials-science-engineering-misisx-mse1x)

3. NPTEL MOOC Course on "Physics of Materials"

(https://courses.nptel.ac.in/noc16_mm08/preview)

4. NPTEL MOOC Course on "Physics of Materials"

(https://courses.nptel.ac.in/noc15_mm03/preview)

5. NPTEL MOOC Course on "Nature and Properties of Materials"

(https://courses.nptel.ac.in/noc17_me27/preview)

(https://courses.nptel.ac.in/noc16_me16/preview)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:

Mid semester exam 40% (week 4)

Assignment/MCQ 10% Assignment/MCQ 10% Final exam (closed book) 40%

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

MME0201, 2nd Semester: 2021 Page 5 of 11

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

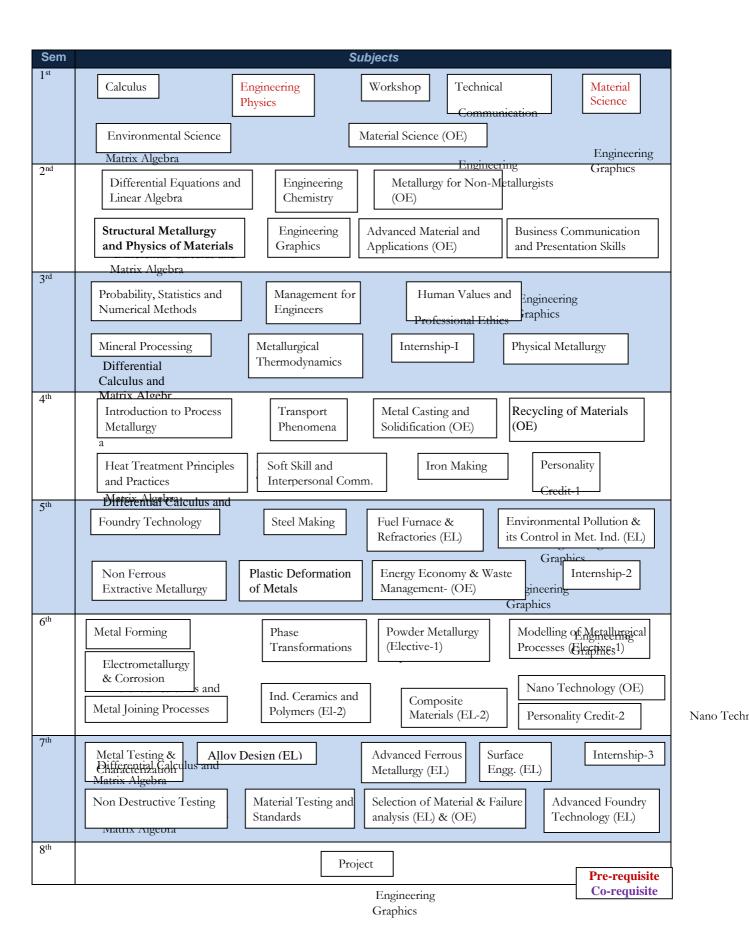
Do not share your work with other students (except where required for a group activity or assessment)

MME0201, 2nd Semester: 2021 Page 6 of 11

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week#	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Atomic Structure, types of bonds; ionic bonds, covalent bonds, Van der Waals bonds, metallic bonds, metallic properties;	CO1 and CO6	lecture
Weeks 2	crystalline vs. non-crystalline solids. Inter-atomic Bonding, Inter-atomic distances. Macro and micro structure in metallic materials, levels of structure, structure property relationships in materials,	CO2 and CO6	lecture
Week 3	Equilibrium & kinetics: stability & met stability, Basic thermodynamic functions, The statistical nature of entropy.	CO2	lecture
Week 4	Revision and MCQ/Assignment with discussion. The Structure of Crystalline Solids: Crystalline & non-crystalline states, covalent solids, Metals & alloys. Ionic solid,	CO1 and CO2	lecture & Google form
Week 5	Unit cell, space lattice, Crystal geometry, crystal systems & Miller-Bravais lattices, Polymorphism or allotropy, direction & planes, slip planes, atom sizes, co-ordination number, atomic packing factor.	CO3	lecture
Week 6	Single crystal, Polycrystalline & Non crystals. Assignment/MCQ followed by discussion.	CO2	lecture & Google form
Week 7	Isotropy & anisotropy, Homogenous & heterogeneous, Types of deformation elastic & anelastic deformation,	CO2	lecture
Week 8	viscoelastic behavior, work hardening & strain hardening, dislocation & strain aging,	CO4	lecture
Week 9	The Bragg's law Diffraction methods, Crystal structure	CO3	lecture

MME0201, 2nd Semester: 2021 Page 7 of 11


ज्ञानेन प्रकाशते जगत्
INDUS
UNIVERSITY

	determination, Crystallite size determination.		
Week 10	Assignment/MCQ followed by discussion. Glass transition, Conductors and Resistors:	CO6	lecture & Google form
Week 11	The resistivity range, Free electron theory, conduction by free electrons, conductor, Semi- conductor, insulators and resistor materials.	CO4 & CO6	lecture
Week 12	Ferromagnetism, diamagnetism, superconductivity, dielectric behavior,	CO5	lecture
Week 13	Thermal conductivity principles. Revision of 4 th Unit	CO5 & CO6	lecture

MME0201, 2nd Semester: 2021

Mapping for B.Tech Metallurgy

MME0201, 2nd Semester: 2021 Page 9 of 11

	Subject: Structural Metallurgy and Physics of Materials								
Program: B. Tech in Metallurgical Engineering Subject Code: MME0201 Semester: II							ster: II		
Teachir	Teaching Scheme (Hours per week) Examination Evaluation Scheme (Marks)								
Lecture	Tutorial	Practical	Credits	University University Internal Internal Evaluation Examination (CIE)- (CIE)		Continuous Internal Evaluation (CIE)- Practical	Total		
3	0	0	3	16/40		0	24/60	0	100

Course Objectives

- 1. To give them knowledge about diffusion in solids.
- 2. To teach them basics on nucleation and growth and its applications.
- 3. To teach them about crystal defects in metallic materials their origin, causes and remedial measure.
- 4. To provide basic knowledge about properties of materials such as electrical and thermal Conductivity, magnetism, dielectric properties.

CONTENTS

UNIT-I

[10 hours]

Atomic Structure, types of bonds; ionic bonds, covalent bonds, Van der Waals bonds, metallic bonds, metallic properties; crystalline vs. non-crystalline solids. Inter-atomic Bonding, Inter- atomic distances.

Macro and micro structure in metallic materials, levels of structure, structure property relationships in materials, Equilibrium & kinetics: stability & met stability, Basic thermodynamic functions, The statistical nature of entropy.

UNIT-II

[10 hours]

The Structure of Crystalline Solids: Crystalline & non crystalline states, covalent solids, Metals & alloys. Ionic solid, unit cell, space lattice, Crystal geometry, crystal systems & Miller- Bravais lattices, Polymorphism or allotropy, direction & planes, slip planes, atom sizes, co-ordination number, atomic packing factor.

UNIT-III

[10 hours]

Isotropy & anisotropy, Homogenous & heterogeneous, Defects, Types of defects, Stress-strain diagram, Types of deformation elastic & anelastic deformation, viscoelastic behavior, work hardening & strain hardening, dislocation & strain aging.

UNIT-IV

[10 hours]

Glass transition, Conductors and Resistors: The resistivity range, Free electron theory, conduction by free electrons, conductor, Semi- conductor, insulators and resistor materials.

Ferromagnetism, diamagnetism, paramagnetism, superconductivity, dielectric behavior, thermal conductivity principles.

MME0201, 2nd Semester: 2021 Page 10 of 11

Course Outcomes

- 1. To apply the knowledge about the basic structure of metals and alloys, which are the building block for developing macro and micro structure of metallic materials.
- 2. To apply the knowledge about metallic and non-metallic type of bonding and their differentiation.
- 3. To apply the concept of polymorphism and others.
- 4. To solve different numerical pertaining to crystal structure determination & phase diagram determination.

Text Books

- 1. C. S. Barret & T. B. Massalski, "Structure of Metals Crystallographic Methods, Principles & Data", McGraw-Hill Book Company, 3rd Edition, 1966, ISBN: 9780070038158.
- 2. A. H. Cottrell, "Theoretical Structural Metallurgy", The English Language Book Society & Edward Arnold (Publishers) Ltd., 2nd Edition, 1964, OCLC: 959782723.
- 3. B. D. Cullity, "Elements of X-ray Diffraction", Pearson New International, 3rd Edition, 2014, ISBN: 9781292040547.
- 4. R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, "Physical Metallurgy Principles", Stamford CT: Cengage Learning, 4th Edition, 2010, ISBN: 9780495438519.

Reference Books

1. V. Raghavan, "Materials Science & Engineering", Prentice-Hall of India Pvt. Ltd, 6th Edition, 2015, ISBN: 9788120350922.

Web Resources

- 1. MIT Open Courseware on "Materials Science and Engineering"
- (http://ocw.mit.edu/OcwWeb/Materials-Science-and-Engineering/)
- 2. EdX Course on "Materials Science and Engineering"
- (https://www.edx.org/course/materials-science-engineering-misisx-mse1x)
- 3. NPTEL MOOC Course on "Physics of Materials"
- (https://onlinecourses.nptel.ac.in/noc16_mm08/preview)
- 4. NPTEL MOOC Course on "Physics of Materials"
- (https://onlinecourses.nptel.ac.in/noc15_mm03/preview)
- 5. NPTEL MOOC Course on "Nature and Properties of Materials"

(https://onlinecourses.nptel.ac.in/noc17_me27/preview)

(https://onlinecourses.nptel.ac.in/noc16 me16/preview)

MME0201, 2nd Semester: 2021 Page 11 of 11

Name of Institute: IISHLS

Name of Faculty: Prof. Ghanshyam Malaviya

Course code:MA0211

Course name: Differential Equations and Linear Algebra

Pre-requisites: None Credit points: 04 Offered Semester: 02

Course coordinator (weeks 01 - 15)

Full name: Prof. Hemlata Jethanandani

Department with siting location: Department of Mathematics, ISHLS, Fourth floor, Bhanwar

Building Telephone:

Email: hemlatajethanandani.gd@indusuni.ac.in

Consultation times:

Course lecturer (weeks 01 - 15)

Full name: Prof.Hemlata Jethanandani

Department with siting location: Department of Mathematics, ISHLS, Fourth floor, Bhanwar

Building Telephone:

Email: hemlatajethanandani.gd@indusuni.ac.in

Consultation times:

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1. To provide mathematical knowledge and skills needed to support their concurrent and subsequent engineering studies.
- 2. To provide an ability to apply knowledge of basic science and engineering fundamentals.
- 3. To provide an ability to undertake problem identification, formulation and solution.
- 4. To provide an ability to analyze different mathematical models within science and technology and work creatively, systematically and critically.
- 5. To provide an ability to find strategies for the solution of different types of mathematical models using knowledge about the possibilities and limitations of the different methods and tools.
- 6. To provide an ability to develop abstract, logical and critical thinking and the ability to reflect critically upon their work and work of others.
- 7. To provide an ability to insight their strengths and weakness as learners and to appreciate the value of errors or mistakes as powerful motivators to enhance learning and understanding.

Course Outcomes (CO)

- (1) To apply methods to solve the ordinary and partial differential equation.
- (2) To relate the physical problems with the mathematical problems.

Subject-MA0211, Semester: 2nd (2020-21) Page 1 of 9

Page 2 of 9

- (3) To calculate the Eigen values and Eigen vectors of matrix.
- (4) Methods to solve Linear homogeneous and nonhomogeneous linear equation systems.

Course Outline

Unit 1	First order ordinary Differential Equations with applications	8 Hours			
	Revision of ordinary differential equation: Introduction of Mathematical				
	Modeling, Basic Definitions, First Order First Degree Differential				
	Equations, Variable Separable equation, Homogeneous Equation				
	Exact Differential Equations				
	Reduction of Non-Exact Differential Equations to exact form using				
	Integrating Factors				
	First Order Linear Differential Equation, Bernoulli Equation				
	Applications: Orthogonal Trajectories, Simple Electric Circuits.				
Unit 2	Higher order ordinary differential equations with applications	7 Hours			
	Solution of Linear differential equations of higher order with constant				
	coefficients, complimentary function and particular integral				
	Application of Linear differential equation - Application of Deflection of				
	Beams, Electric circuits				
Unit 3	Partial differential equations with applications	7 Hours			
	Formation of Partial differential equations, Lagrange's method, Directly				
	Integrable equations				
	Method of separation of variables, solution of one dimensional wave				
	equation, heat equation and Laplace equation.				
Unit 4	Linear Algebra	8 Hours			
	Concepts of Determinants and Matrices, Types of Matrices				
	Row Echelon and Reduced Row Echelon form				
	Inverse of a Matrix, Rank of a Matrix, Normal Form				
	System of Linear Homogeneous Equations				
	System of Non-Homogeneous Equations, Gaussian Elimination Method				
	Eigen Values and Eigen Vectors - Properties of Eigen Values and Eigen				
	Vectors, Caley Hamilton theorem				

Details of referencing system to be used in written work

<u>Text Book</u>: B. V. Ramana, "Higher Engineering Mathematics", Tata McGraw Hill.

Reference Books:

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics" (8th Edition), Wiley Eastern Ltd., New Delhi.
- 2. Dr. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi
- 3. Murray Spiegel, "Advanced Mathematics for Engineering & Science: Schaum's Outline Series", Tata McGraw Hill Publication
- 4. MerelC Potter, J.L. Goldberg, "Advanced Engineering Mathematics" (3rd Edition), Oxford India Publication.

Subject-MA0211, Semester: 2nd (2020-21)

Method of delivery: Lectures, Self-Study Material

Study time: 4 hours per week

Blooms Taxonomy and Knowledge retention

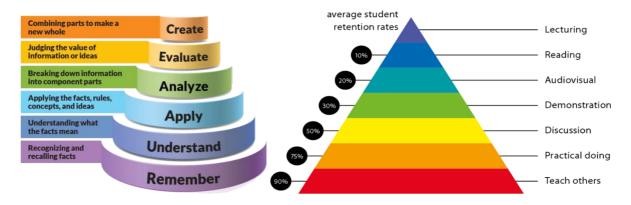


Figure 1: Blooms Taxonomy

Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

General Graduate Qualities	Specific Department of a Graduate Capabilities
Informed	1 Professional knowledge, grounding &
Have a sound knowledge of an area of	awareness
study or profession and understand its	
current issues, locally and internationally.	
Know how to apply this knowledge.	
Understand how an area of study has	
developed and how it relates to other	
areas.	
Independent learners	2 Information literacy, gathering &
Engage with new ideas and ways of	processing
thinking and critically analyze issues.	
Seek to extend knowledge through	
ongoing research, enquiry and reflection.	
Find and evaluate information, using a	
variety of sources and technologies. Acknowledge the work and ideas of	
others.	
Problem solvers	4 Problem solving skills
Take on challenges and opportunities.	4 i lobiciii solvilig skiiis
Apply creative, logical and critical thinking	
skills to respond effectively. Make and	
implement decisions. Be flexible,	
thorough, innovative and aim for high	
standards.	
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work	7 Teamwork
collaboratively and engage with people in	
different settings. Recognize how culture	
can shape communication.	
Responsible	10 Sustainability, societal &
Understand how decisions can affect	environmental impact
others and make ethically informed	
choices. Appreciate and respect diversity.	
Act with integrity as part of local, national,	
global and professional communities.	

Subject-MA0211, Semester: 2nd (2020-21) **Page 4 of 9**

Practical work: NOT APPLICABLE

Lecture/tutorial times

Lecture/Tutorial	Day	Time	Location
Lecture	Monday	3.10-12.20 PM	-
Lecture	Wednesday	12:20-01:20 PM	-
Lecture	Thursday	2:00-3:00 PM	-
Lecture	Friday	11:10-12:10 PM	-

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

ASSESSMENT GUIDELINES

Your final course mark will be calculated in the following manner:

Type of Examination	Weightage	Method of Assessment
		30% Closed book examination
Internal Examination	60%	10% Tutorials
monal Examination	0070	10% Attendance
		10% MCQ/Presentation/Quiz
External Examination	40%	Closed Book Examination

Subject-MA0211, Semester: 2nd (2020-21) Page 5 of 9

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report: Not Applicable

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of percentage of the maximum mark per calendar day.

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Subject-MA0211, Semester: 2nd (2020-21) Page 6 of 9

Course schedule (subject to change)

Week#	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Unit-1: Basic Definitions, variable separable differential equation, homogeneous differential equation, differential equations reducible to the above equations.	CO3	
Weeks 2	Unit–1: Exact differential equations, use of integrating factor to reduce non-exact into exact differential equations.	CO1	
Week 3	Unit-1: First order differential equation and Bernoulli equation	CO5	
Week 4	Unit-1: Applications to orthogonal trajectory and simple electric circuit.	CO2	
Week 5	Unit-2: Introduction to higher order differential equations, solution of homogeneous differential equations(finding complimentary function)	CO5	
Week 6	Unit-2: Solution of non-homogeneous linear differential equation with X = e^(ax), sin ax, cos ax, x^n	CO2	
Week 7	Unit-2:Application to deflection of beams and electric circuits	CO1	
Week 8	Unit-3: Introduction to partial differential equations, formation of partial differential equations and directly integral equations	CO6	
Week 9	Unit-3: Solution of partial differential equations using Lagrange method, examples related to it.	C07	
Week 10	Unit-3:Application to solve one dimensional wave equation, heat equation and Laplace equation	CO4	
Week 11	Unit-4: Revision of concepts on determinants, matrices(including types of matrices, operations on matrices), Reduction of matrices into row echelon form, reduced row echelon form and normal form	CO3	

Subject-MA0211, Semester: 2nd (2020-21)

ज्ञानेन प्रकाशते जगत्
INDUS
UNIVERSITY

Week 12	Unit-4: Finding the rank of the matrix and find the inverse of a square matrix	CO4	
Week 13	Unit-4: System of equations – Homogeneous and nonhomogenous using Gauss elimination method	CO5	
Week 14	Unit-4: Eigen values and Eigen vectors of a square matrix and related properties	CO2	
Week 15	Unit-4: More examples on Eigen values, Eigen vectors of a matrix and concept of Cayley Hamilton theorem	CO7	

PROGRAM MAP for Bachelor of Engineering (Department of Mathematics,ISHLS)

Subject Mind Mapping

Sr.No.	Semester	Course Name	Compulsory/Open Elective
1	1	Calculus	Compulsory
2	II	Linear Algebra and Differential Equations	Compulsory
3	III	Probability , Statistics and Numerical methods	Compulsory
4	IV	Complex Analysis / Discrete Mathematics	Open elective
5	V	Finite Element method	Open elective
6	VI	Graph Theory	Open elective
7	VII	Optimization Techniques / Artificial neural network and soft computing	Open elective