

Name of Institute: Institute of Technology and Engineering Name of Faculty: Dr.K. Santhy

Course code: MME0404 Course name: Heat Treatment Principles and Practices Pre-requisites: Physical Metallurgy, Structural Metallurgy and Physics of Materials Credit points: 4 Offered Semester: 4th

Course Coordinator (weeks XX - XX)

Full name: Dr.K. Santhy Department with siting location: Third floor (Staff room) Telephone: 9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15-5.00 PM

Course Lecturer (weeks xx - XX)

Full name: Dr.K. Santhy Department with siting location: Third floor (Staff room) Telephone: 9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15-5.00 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1) To introduce the engineering science principles and applications associated with heat treatments.
- 2) To study the basic heat treatment processes.
- 3) To study the structure of metals and its influence on material properties and performance based on different heat treatments.

Course Outcomes (CO)

- CO 1: List the different types of furnaces [BT-1]
- CO 2: Differentiate thermal, thermo-chemical and thermo-mechanical treatment processes [BT-2]
- CO 3: Illustrate the phase transformations in steels [BT-3].
- CO 4: Schematically illustrate the TTT and CCT diagram [BT-4]

CO 5: Experimentally determine the microstructure and hardness of the various thermal and thermo-chemical treated metals. [BF-5]

CO 6: Design the proper heat treatment technique to obtain the required microstructure in ferrous and nonferrous materials [BT-6]

Course Outline (Key in topics to be dealt)

Types of Heat treatment Heat treatment of ferrous materials (Steel & Cast iron) Hardening and hardenability Surface hardening techniques Case depth measurements Heat treatment of nonferrous materials Types of furnace Root cause analysis of various heat treatment defects

Method of delivery

(self study material, Active Learning Techniques) Lecture, videos, interactive learning method

Study time

(How many hours per week including class attendance) 3 hours

CO-PO Mapping (PO: Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	-	-	-	-	-	-	-	1
CO2	2	3	2	1	-	1	-	-	-	-	-	1
CO3	3	3	2	2	-	-	-	-	-	-	-	1
CO4	3	3	2	2	-	-	1	-	-	-	-	1
CO5	2	2	2	2	3	-	-	-	-	-	1	2
CO6	3	2	2	2	-	1	-	-	-	-	1	2

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies.	2 Information literacy, gathering & processing

Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	
Enective communicators	o written communication
Articulate ideas and convey them	6 Oral communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible	S Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal &
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed	6 Oral communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity.	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national,	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact

Practical work:

(Mention what practical work this Course involves)

Lecture/tutorial times

(Give lecture times in the format below)

Example:			
Lecture	Monday	9.55 – 10.50 am	Room Lab 1
Lecture	Tuesday	11.55 – 12.50 am	Room Lab 1
Lecture	Thursday	11.55 – 12.50 am	Room Lab 1

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

1. D. S. Clark and W. R. Varney, "Physical Metallurgy for Engineers", Van Nostrand Reinhold Company, 2nd Edition, 1962, ISBN: 9780442015701.

2. T. V. Rajan, C. P. Sharma and A. Sharma, "Heat Treatment (Principles and Techniques)", Prentice Hall India, 2nd Edition, 2011, ISBN: 9788120340954.

Additional Materials

S. H. Avner, "Physical Metallurgy", Tata Mcgraw –Hill, 2nd Edition, 2008, ISBN: 9780074630068.
 Y. Lakhtin, "Engineering Physical Metallurgy", CBS Publishers & Distributors, 1st Edition, 2005, ISBN: 9788123906027.

S. H. Avner, "Physical Metallurgy", Tata Mcgraw –Hill, 2nd Edition, 2008, ISBN: 9780074630068.
 V. D. Kodgire and S. V. Kodgire, "Material Science and Metallurgy for Engineers", Everest Publishing House, 31st Edition, 2011, ISBN: 9788186314005.

 V. Singh, "Heat Treatment of Metals", Standard Publishers Distribution, 2nd Edition, 2011, ISBN: 9788180140389.

6. V. Raghvan, "Physical Metallurgy (Principles and Practice)", Prentice Hall India, 2nd Edition, 2006, ISBN: 9788120330122.

7. B. Zakharov, "Heat Treatment of Metals", University Press of the Pacific, 2nd Edition, 2002, ISBN: 9781410203052.

8. ASM International, "ASM Handbook on Heat Treating Vol. 4", 11th edition, 1991, ISBN: 9780871703798.

9. K. H. Prabhudev, "Handbook of Heat Treatment", Tata Mc-Graw Hill, 4th Reprint, 2011, ISBN: 9780074518311.

1. NPTEL Course on "Principles of Physical Metallurgy"

(http://nptel.ac.in/courses/113105024/)

2. NPTEL MOOC Course on "Heat Treatment and Surface Hardening-I"

(https://onlinecourses.nptel.ac.in/noc16_mm12/preview)

3. NPTEL MOOC Course on "Heat Treatment and Surface Hardening-Part II"

(https://onlinecourses.nptel.ac.in/noc17_me19/preview)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:		
Mid semester	40%	
MCQ/Assignment	5%	
MCQ/Assignment	5%	
Program participation	5%	
Attendance	5%	
Final exam (closed book)	40%	

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components. **Examination and Assessment will be carried out as per CoE instruction.**

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

(Mention quiz, assignment submission, breaks etc. as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction to Fe-C diagram, Phase Transformation on heating, Forming of austenite, Kinetics of formation of austenite.	1,4	Interactive teaching using PPT
Weeks 2	Nucleation sites in eutectoid steels, Austenitic grain size, Grain growth, Determination of austenitic grain size, Importance of austenitic grain size	1,2,3	Interactive teaching using PPT
Week 3	Method of plotting, Types of TTT diagram, Critical cooling rate, Effect of alloying elements on TTT diagram, Applications, Continuous cooling transformation diagram, Limitations of Iron-Iron Carbide Diagram, Effect of Alloying elements on CCT diagram.	2,3,4	Interactive teaching using PPT
Week 4	Pearlitic transformation: Mechanism of transformation, Kinetics of transformation, Hull-Mehl model of pearlitic transformation, Effect of alloying elements on transformation, Interlameller spacing	3	Interactive teaching using PPT
Week 5	Bainitic transformation: Characteristics, Mechanism of transformation, Bainitic structure.Martensitic transformation: Diffusionless transformation, Mechanism of transformation, Kinetics of transformation, M_s - M_f temperatures, Athermal and isothermal martensites, Effect of applied stress on transformation, Habit planes, Bain distortion model / crystallographic theory of martensitic transformation, Tempered Martensite, Retained austenite, Martensitic transformation in non-ferrous systems such as Fe-Ni and Cu-Al systems	3	Interactive teaching using PPT
Week 6	Stress relieving, Annealing – full annealing, partial annealing, bright annealing, diffusion annealing,	1,5	Interactive teaching using PPT

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
	recrystallization annealing, Spheroidizing, Normalizing.		
Week 7	Hardening and Tempering, Hardening of typical steels, cast irons and non-ferrous alloys.	3,5	Interactive teaching using PPT
Week 8	Principles involved in induction and flame hardening methods and application of selective hardening, Laser hardening.	2	Interactive teaching using PPT
Week 9	Case carburizing (solid, liquid and gaseous), Cyaniding, Carbonitriding, Nitriding, Plasma nitriding etc., Depth of penetration - its measurement and relation with time and temperature, Hardening & Hardenability of steels.	5,6	Interactive teaching using PPT
Week10	Austempering,Martempering,Ausforming,Patenting,Sub-zerotreatment etc.,ThermoMechanicaltreatments.	2,5	Interactive teaching using PPT
Week 11	Heat treatment of carbon steels, alloy steels, tools and dies steels, stainless steels (with reference to carbide precipitation and sigma phase formation) and cast irons.	5	Interactive teaching using PPT
Week 12	Heat treatment of Aluminum alloys, titanium alloys and copper alloys, Concept of age-hardening. Design for heat treatment, Heat treatment furnaces- their temperature and atmosphere control, Defects in heat treated parts, Causes for the defects in heat-treated parts and remedies.	1,6	Interactive teaching using PPT

Nano Techn

	Subject: Heat Treatment Principles and Practices									
Program: B. Tech in Metallurgical Engineering				neering		Subject Code:	MME0404	Semest	er: IV	
Teaching Scheme (Hours per week)					E	Examiı	nation Evaluati	on Scheme (M	arks)	
	Lecture	Tutorial	Practical	Credits	Univers Theor Examina	sity ry ation	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
	3	0	2	4	16/40	0	16/40	24/60	24/60	200

Course Objectives

1. To introduce the engineering science principles and applications associated with heat treatments.

2. To study the basic heat treatment processes.

3. To study the structure of metals and its influence on material properties and performance based on different heat treatments.

CONTENTS

<u>UNIT-I</u>

Principles of heat treatment of steels:

Phase Transformation on heating, Forming of austenite, Kinetics of formation of austenite, Nucleation sites in eutectoid steels, Austenitic grain size, Grain growth, Determination of austenitic grain size, Importance of austenitic grain size

TTT (Time Temperature Transformation) and CCT (Continuous Cooling Transformation) diagrams:

Method of plotting, Types of TTT diagram, Critical cooling rate, Effect of alloying elements on TTT diagram, Applications, Continuous cooling transformation diagram, Limitations of Iron-Iron Carbide Diagram, Effect of Alloying elements on CCT diagram.

UNIT-II

Pearlitic transformation: Mechanism of transformation, Kinetics of transformation, Hull-Mehl model of pearlitic transformation, Effect of alloying elements on transformation, Interlameller spacing,

Bainitic transformation: Characteristics, Mechanism of transformation, Bainitic structure.

Martensitic transformation:

Diffusionless transformation, Mechanism of transformation, Kinetics of transformation, $M_s - M_f$ temperatures, Athermal and isothermal martensites, Effect of applied stress on transformation, Habit planes, Bain distortion model / crystallographic theory of martensitic transformation, Tempered Martensite, Retained austenite, Martensitic transformation in non-ferrous systems such as Fe-Ni and Cu-Al systems.

UNIT-III

Heat treatment processes:

Stress relieving, Annealing – full annealing, partial annealing, bright annealing, diffusion annealing, recrystallization annealing, Spheroidizing, Normalizing, Hardening and Tempering, Hardening of typical steels, cast irons and non-ferrous alloys.

Surface hardening of metals:

Principles involved in induction and flame hardening methods and application of selective hardening,

[10 hours]

[10 hours]

[10 hours]

Laser hardening, Case carburizing (solid, liquid and gaseous), Cyaniding, Carbonitriding, Nitriding, Plasma nitriding etc., Depth of penetration - its measurement and relation with time and temperature, Hardening & Hardenability of steels.

UNIT-IV

[10 hours]

Special methods of heat treatment:

Austempering, Martempering, Ausforming, Patenting, Sub-zero treatment etc., Thermo Mechanical treatments. Heat treatment of carbon steels, alloy steels, tools and dies steels, stainless steels (with reference to carbide precipitation and sigma phase formation) and cast irons – specific examples, Heat treatment of Aluminum alloys, titanium alloys and copper alloys, Concept of age-hardening. Design for heat treatment, Heat treatment furnaces- their temperature and atmosphere control, Defects in heat treated parts, Causes for the defects in heat-treated parts and remedies.

Heat Treatment Principles and Practices Lab (List of Experiments)

Experiment No.	Title
1	Annealing of Medium / High carbon steels
2	Characterization of annealed steel
3	Normalizing of Medium / High carbon steels
4	Characterization of normalized steel
5	Spheroidizing of High carbon steel
6	Characterization of spheroidized steel
7	Hardening of medium/ high carbon steels
8	Characterization of hardened steel
9	Tempering of medium/ high carbon steels
10	Characterization of tempered steel
11	To examine the effect of quenching media on hardening of steel
12	To measure the hardenability of steel using Jominy End-Quench test
13	To study the case hardening processes
14	Carburizing of low carbon steels
15	Case depth measurement and characterization of carburized steels

Course Outcomes

1. To apply the knowledge of various types of heat treatments to design the heat treatment cycles for different components of many areas of mechanical, manufacturing, civil, and materials engineering in the aerospace, automobile, transportation, energy, environmental, biomedical, and electronics industries.

2. To predict the mechanical properties based on the changes in heat treatment variables.

3. To apply their knowledge in the field of alloy design and microstructural engineering.

Text Books

1. D. S. Clark and W. R. Varney, "Physical Metallurgy for Engineers", Van Nostrand Reinhold Company, 2nd Edition, 1962, ISBN: 9780442015701.

2. T. V. Rajan, C. P. Sharma and A. Sharma, "Heat Treatment (Principles and Techniques)", Prentice Hall India, 2nd Edition, 2011, ISBN: 9788120340954.

Reference Books

S. H. Avner, "Physical Metallurgy", Tata Mcgraw –Hill, 2nd Edition, 2008, ISBN: 9780074630068.
 Y. Lakhtin, "Engineering Physical Metallurgy", CBS Publishers & Distributors, 1st Edition, 2005, ISBN: 9788123906027.

3. S. H. Avner, "Physical Metallurgy", Tata Mcgraw –Hill, 2nd Edition, 2008, ISBN: 9780074630068.
4. V. D. Kodgire and S. V. Kodgire, "Material Science and Metallurgy for Engineers", Everest Publishing House, 31st Edition, 2011, ISBN: 9788186314005.

5. V. Singh, "Heat Treatment of Metals", Standard Publishers Distribution, 2nd Edition, 2011, ISBN: 9788180140389.

6. V. Raghvan, "Physical Metallurgy (Principles and Practice)", Prentice Hall India, 2nd Edition, 2006, ISBN: 9788120330122.

7. B. Zakharov, "Heat Treatment of Metals", University Press of the Pacific, 2nd Edition, 2002, ISBN: 9781410203052.

8. ASM International, "ASM Handbook on Heat Treating Vol. 4", 11th edition, 1991, ISBN: 9780871703798.

9. K. H. Prabhudev, "Handbook of Heat Treatment", Tata Mc-Graw Hill, 4th Reprint, 2011, ISBN: 9780074518311.

Web Resources

1. NPTEL Course on "Principles of Physical Metallurgy"

(http://nptel.ac.in/courses/113105024/)

2. NPTEL MOOC Course on "Heat Treatment and Surface Hardening-I"

(https://onlinecourses.nptel.ac.in/noc16_mm12/preview)

3. NPTEL MOOC Course on "Heat Treatment and Surface Hardening-Part II"

(https://onlinecourses.nptel.ac.in/noc17_me19/preview)

Name of Institute:IITE Name of Faculty: Mr. Monil Salot

Course code: MME0401

Course name: Introduction to Process Metallurgy

Pre-requisites: Mineral Processing Credit points: 04 Offered Semester: 04

Course Coordinator

Full Name: Mr. Monil Salot Department with siting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Course Lecturer

Full Name: Mr. Monil Salot Department with siting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

1. To gain knowledge about the basic mechanism affecting the different extraction techniques such as Pyrometallurgical, Hydrometallurgical & Electro metallurgical extraction processes.

2. To gain knowledge about the concept of reaction kinetics & its role in understanding the extraction processes.

Course Outcomes (CO)

CO1: To be able to list and define glossary and terminology associated with extractive metallurgy. (BT-1)

CO2: To understand pyro metallurgy, hydrometallurgy and electrometallurgy and its significance. (BT-2)

CO3: To apply principles of extractive metallurgy for economical extraction of metals. (BT-3)

CO4: To analyse and categorise various techniques for extraction. (BT-4)

CO5: To evaluate reaction mechanism and kinetics for efficient extraction. (BT-5) CO6: To innovate techniques (Reaction, Process and Factor based) for effective and efficient metal extraction. (BT-6)

Course Outline

Proposed course mainly deal with Reaction Mechanisms, Pyrometallurgical techniques, Hydro Metallurgical techniques and Electrometallurgical techniques for beneficiation and extraction of metallic ores.

Method of delivery

Face to face lectures, Simulations in Tutorials, Model Making

Study time

3 Lectures and 1 Hr. Tutorials

Introduction to Process Metallurgy (MME0401)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	1	1	-	-	-	-	-	1	3
CO2	2	1	2	2	1	1	2	-	-	-	1	2
CO3	1	2	2	1	-	1	-	-	-	-	3	2
CO4	1	2	3	2	1	-	-	-	-	-	1	1
CO5	3	1	1	2	-	-	-	-	-	-	-	2
CO6	2	2	3	2	1	-	-	-	-	-	-	2
MME0401	2	1.5	2.1	1.6	1	1	2	-	-	-	1.5	2

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomyand Knowledge retention(For reference)

(Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed	1 Professional knowledge, grounding &
Have a sound knowledge of an area of	awareness
study or profession and understand its	
current issues, locally and internationally.	
Know how to apply this knowledge.	
Understand how an area of study has	
developed and how it relates to other	
areas.	

Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities.	4 Problem solving skills
Apply creative, logical and critical thinking	
implement decisions. Be flexible	
thorough, innovative and aim for high	
standards.	
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work	7 Teamwork
collaboratively and engage with people in	
different settings. Recognize how culture	
can shape communication.	
Responsible	10 Sustainability, societal &
Understand now decisions can affect	environmental impact
others and make ethically informed	
Act with integrity as part of local patienal	
global and professional communities.	

Lecture/tutorial times

*Please Refer to Time Table for Lecture Timings, Circulated Separately

Lecture	Room LH 4
Lecture	Room LH 4
Lecture	Room LH 4
Tutorial	Lab -04 (Ground Floor)

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Reference Books

1. W. H. Dennis, "Extractive Metallurgy", Pitman Publishing, 1st Edition, 1965, ISBN: 9780273404729.

2. F. Habashi, "Principles of Extractive Metallurgy", Gordon & Breach, 1st Edition, 1970, ISBN: 9780677017808.

3. T. Rosenqvist, "Principles of Extractive Metallurgy", McGraw Hill, 1st Edition, 1974, ISBN: 9780070538474.

4. J. L. Bray, "Nonferrous Production Metallurgy", John Wiley and Sons, 2nd Edition, 1947, ASIN: B0007E2TW6.

5. R. D. Pehlke, "Unit Processed in Extractive Metallurgy", Elsevier, 1st Edition, 1973, ISBN: 9780444001306.

6. H. S. Ray, "Introduction to Melts: Molten Salts, Slags and Glasses", Allied Publishers Pvt Ltd 1st Edition, 2006, ISBN: 9788177648751.

7. H.S. Ray, B.P Singh, S. Bhattacharjee and V. N. Misra, "Energy in Minerals and Metallurgical Industries", Allied Publishers Pvt Ltd, 1st Edition, 2005, ISBN: 8177648748.

Text books

1. H. S. Ray and A. Ghosh, "Principles of Extractive Metallurgy", New Age Publishers, 2nd Edition, 1991, ISBN: 9788122403220.

2. H.S. Ray, R. Sridhar and K.P. Abraham, "Extraction of Nonferrous Metals", Affiliated East West Press Pvt Ltd, 1st Edition, 2008, ISBN: 9788185095639.

3. S. K. Dutta and A. B. Lele, "Metallurgical Thermodynamics Kinetics & Numericals", S. Chand Publications, 2nd Edition, 2014, ISBN: 9788121939645.

Additional Materials

1. NPTEL Course on "Non-Ferrous Extractive Metallurgy" (http://nptel.ac.in/courses/113105021/)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:

Mid Semester Examination- 40% Assignments- 10% Presentation- 5% Class Participation and Attendance- 5% End Semester Examination- 40%

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report: NA

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction to Pyrometallurgy	CO1-CO6	BB PPT
Weeks 2	Drying Roasting Calcination	CO1-CO6	BB PPT
Week 3	Sintering, Pelletization, converting, smelting	CO1-CO6	BB PPT
Week 4	Introduction to Hydrometallurgy	CO1-CO6	BB PPT
Week 5	Unit Processes and Unit Operation	CO1-CO6	BB PPT
Week 6	Techniques used in metal extraction via hydrometallurgy	CO1-CO6	BB PPT
Week 7	Introduction to electrometallurgy	CO1-CO6	BB PPT
Week 8	Reactions of electrometallurgy	CO1-CO6	BB PPT
Week 9	Processes of electrometallurgy	CO1-CO6	BB PPT
Week 10	Reactions of electrometallurgy	CO1-CO6	BB PPT
Week 11	Processes of electrometallurgy	CO1-CO6	BB PPT
Week 12	Reaction Mechanics	CO1-CO6	BB PPT
Week 13	Reaction Mechanics-Rate Processes	CO1-CO6	BB PPT
Week 14	Reaction Mechanics- Chemical Rates	CO1-CO6	BB PPT
Week 15	Reaction Mechanics- Chemical Rates	CO1-CO6	BB PPT
Week 16	Revision and Numerical Solution	CO1-CO6	BB PPT

Program Map for Metallurgical Engineering Department

	Subject: Introduction to Process Metallurgy (EL)							
Program	Program: B. Tech in Metallurgical EngineeringSubject Code: MME0401Semester: IV							er: IV
Teaching Scheme (Hours per week)				Exam	ination Evaluati	on Scheme (M	(arks)	
Lecture	Tutorial	Practical	Credits	University Theory Examination	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	1	0	4	16/40	0	24/60	0	100

Course Objectives

1. To gain knowledge about the basic mechanism affecting the different extraction techniques such as Pyro-metallurgical, Hydrometallurgical & Electro metallurgical extraction processes.

2. To gain knowledge about the concept of reaction kinetics & its role in understanding the extraction processes.

CONTENTS

<u>UNIT-I</u>

Pyro-metallurgical Processes

Basics of Pyro-metallurgical Processes, Drying, Calcination, Agglomeration, Sintering, Roasting, Smelting. Converting, Refining processes with examples for metals like Aluminum, Copper, Zinc, and Lead.

<u>UNIT-II</u>

Hydrometallurgical Processes

Basics of Hydrometallurgical processes, Fundamentals of Unit processes and Unit operations, Principles and types of Leaching, Kinetics of leaching, and Refining of leached solution, Solvent extraction and ion-exchange processes, Cementation, Gaseous reduction of metals.

<u>UNIT-III</u>

Electrometallurgical Processes

Basics of Electrometallurgical processes: Electrowinning and Electrorefining, Aqueous/Fused salt electrolysis. Flow-sheets of Extraction of Important Metals, Simplified Flowsheets for the production of Iron, Steel, Aluminum, Copper, Zinc and Lead.

[10 hours]

[10 hours]

[10 hours]

UNIT-IV

[10 hours]

Reaction Kinetics

Kinetics of metallurgical processes and material, velocity/rate of reaction, factors affecting rate of reaction, Order of Reaction and molecularity, zero, first, second order and order of reaction, half-life period, determination of order of reaction, integration method, half period method, rate constants, Arrhenius equation, collision theory, Activation Energy, activation energy profile of an exothermic reaction, activation energy barrier, theory of absolute reaction rate.

Course Outcomes

1. To understand about the requirement of various devices required for carrying out different extraction processes.

2. To analyze and apply various factors affecting these extraction processes.

Text Books

1. H. S. Ray and A. Ghosh, "Principles of Extractive Metallurgy", New Age Publishers, 2nd Edition, 1991, ISBN: 9788122403220.

2. H.S. Ray, R. Sridhar and K.P. Abraham, "Extraction of Nonferrous Metals", Affiliated East West Press Pvt Ltd, 1st Edition, 2008, ISBN: 9788185095639.

3. S. K. Dutta and A. B. Lele, "Metallurgical Thermodynamics Kinetics & Numericals", S. Chand Publications, 2nd Edition, 2014, ISBN: 9788121939645.

Reference Books

1. W. H. Dennis, "Extractive Metallurgy", Pitman Publishing, 1st Edition, 1965, ISBN: 9780273404729.

2. F. Habashi, "Principles of Extractive Metallurgy", Gordon & Breach, 1st Edition, 1970, ISBN: 9780677017808.

3. T. Rosenqvist, "Principles of Extractive Metallurgy", McGraw Hill, 1st Edition, 1974, ISBN: 9780070538474.

4. J. L. Bray, "Nonferrous Production Metallurgy", John Wiley and Sons, 2nd Edition, 1947, ASIN: B0007E2TW6.

5. R. D. Pehlke, "Unit Processed in Extractive Metallurgy", Elsevier, 1st Edition, 1973, ISBN: 9780444001306.

6. H. S. Ray, "Introduction to Melts: Molten Salts, Slags and Glasses", Allied Publishers Pvt Ltd 1st Edition, 2006, ISBN: 9788177648751.

7. H.S. Ray, B.P Singh, S. Bhattacharjee and V. N. Misra, "Energy in Minerals and Metallurgical Industries", Allied Publishers Pvt Ltd, 1st Edition, 2005, ISBN: 8177648748.

Web Resources

1. NPTEL Course on "Non-Ferrous Extractive Metallurgy" (http://nptel.ac.in/courses/113105021/)

Name of Institute:IITE Name of Faculty: Mr. Monil Salot

Course code: MME0402

Course name: Iron Making

Pre-requisites: Material Science, Engineering Chemistry, Mineral Processing, Introduction to Process Metallurgy
Credit points: 04
Offered Semester: 04

Course Coordinator

Full Name: Mr. Monil Salot Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Course Lecturer

Full Name: Mr. Monil Salot Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

1. To impart the overall idea of how Iron is produced, the history of Iron making and availability of raw materials for iron production.

2. To know about various techniques of raw material preparation for charging in iron making furnace, construction and operation of iron making furnace and reactions occurring in the furnace, reaction mechanism inside the blast furnace.

Course Outcomes (CO)

CO1: Able to identify the raw materials involved in iron making processes. (BT-1)

CO2: To explain agglomeration processes and be able to differentiate processes of sintering, nodulising, pelletization etc. (BT-2)

CO3: Ability to solve mass balance equations for blast furnace operations. (BT-3)

CO4: To analyse and infer operational parameters with Blast furnace irregularities and implement remedial measures. (BT-4)

CO5: To evaluate and choose the best possible alternative methods of Iron Making with respect to variables and factors involved. (BT-5)

CO6: To design and develop slag metal reactions in favour of Blast Furnace operation desires for tailor made chemistry. (BT-6)

Course Outline

Proposed course mainly deal with history of iron making and its importance, ore and raw material requirement and beneficiation, reaction mechanics, understanding blast furnace proper and related equipments, how to control blast furnace irregularities, maintenance and alternatives routes to iron making.

Method of delivery

- Face to face lectures,
- Numerical and Simulations in Tutorials,
- Model Making
- Video Lectures When and as necessary

Study time

3 Lectures and 2 Hrs. Lab

CO-PO Mapping (PO: Program Outcomes)

	Iron Making (MME0402)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	-	-	-	-	-	1	2
CO2	2	2	3	1	1	-	1	-	-	-	-	1
CO3	3	2	3	2	-	-	-	-	-	-	1	2
CO4	2	3	3	3	-	-	-	-	-	-	-	2
CO5	2	1	3	2	2	-	-	-	-	-	2	2
CO6	3	2	1	2	-	-	-	-	-	-	-	2
MME0402	2.3	1.83	2.3	1.83	1.6	-	1	-	-	-	1.3	1.83

1-Lightly Mapped 2- Moderately Mapped 3- Highly Mapped

Blooms Taxonomy and Knowledge retention(For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection.	2 Information literacy, gathering & processing

Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	
Enective communicators	5 written communication
Articulate ideas and convey them	6 Oral communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	5 Written communication 6 Oral communication 7 Teamwork
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible	6 Oral communication 6 Oral communication 7 Teamwork 10 Sustainability, societal &
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity.	6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national,	6 Oral communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact

Practical work:

Experiment No	Title						
1	dentification of raw material for iron making						
2	Bulk density Measurement						
3	Determination of Angle of Repose						
4	Sintering of iron ore fines						
5	Pelletization of iron ore fines						
6	Induration behavior of pellets						
7	Box compression test of hardened or indurated pellets						
8	Tumbling/Drum test of green and indurated pellets						
9	Shatter Test of agglomerated products						
10	Drop Test of agglomerated products						
11	Study of ISP layout						
12	Charge calculations for raw materials in Blast Furnace						

13	Study of different parts of Blast Furnace					
14	Chemical analysis of Iron based products					
15	Study of Briquetting Process					

Lecture/tutorial times

*Please Refer to Time Table for Lecture Timings, Circulated Separately

Lecture	Room LH 3
Lecture	Room LH 3
Lecture	Room LH 3
Lab	Lab -04 (Ground Floor)
Lab	Lab -04 (Ground Floor)

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Reference Books

1. A. W. Cramb, "Making, Shaping and Treating of Steels", Association of Iron and Steel Engineers, 11th Edition, 1985, ISBN: 9780930767020.

2. J. G. Peacey and W. G. Davenport, "Blast Furnace: Theory and Practice", Pergamon Press, Oxford, 1st Edition, 1979, ISBN: 9780080232584.

3. J. J. Gupta and Amit Chatterjee, "Blast Furnace Iron Making", SBA Publications, 1st Edition, 1995, ISBN: 9788185164106.

Text books

Text Books

1. R. H. Tupkary, "Introduction to Modern Iron Making", Khanna Publications, 1st Edition, 2004, ISBN: 9788174090218.

2. A. Ghosh and A. Chatterjee, "Iron Making and Steel Making: Theory and Practice", Prentice Hall, 1st Edition, 2008, ISBN: 9788120332898.

3. A. K. Biswas, "Principles of Blast Furnace Iron Making", SBA Publications, 1st Edition, 1999, ISBN: 9780949917089Edition, 1964, ISBN: 9781295841929.

Additional Materials

1. NPTEL Course on "Materials and Heat Balance in Metallurgical Processes" (http://nptel.ac.in/courses/113104060/26)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example: Mid Semester Examination- 40% Assignments- 10% Presentation- 5% Class Participation and Attendance- 5% End Semester Examination- 40%

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	General and History of Iron Making, Beneficiation of Raw Materials: Coke	CO1-CO6	BB PPT
Weeks 2	Beneficiation of Raw Materials :Sinter,	CO1-CO6	BB PPT
Week 3	Beneficiation of Raw Materials: Pellets	CO1-CO6	BB PPT
Week 4	Reaction Mechanics	C01-C06	BB PPT
Week 5	BF Proper	CO1-CO6	BB PPT
Week 6	BF Accessories	CO1-CO6	BB PPT
Week 7	Starting and Shutting down a BF	CO1-CO6	BB PPT
Week 8	BF Irregularities	CO1-CO6	BB PPT
Week 9	BF Maintenance	CO1-CO6	BB PPT
Week 10	Alternative Routes of Iron Making: Need and Importacne	CO1-CO6	BB PPT
Week 11	Alternative Routes of Iron Making: Need and Importacne	CO1-CO6	BB PPT
Week 12	Alternative Routes of Iron Making: SR Processes	CO1-CO6	BB PPT
Week 13	Alternative Routes of Iron Making: DR Processes	CO1-CO6	BB PPT
Week 14	Alternative Routes of Iron Making: DR Processes	CO1-CO6	BB PPT
Week 15	Alternative Routes of Iron Making: SR Processes	CO1-CO6	BB PPT
Week 16	Alternative Routes of Iron Making: SR Processes	CO1-CO6	BB PPT

Program Map for Metallurgical Engineering Department (Mapped For Iron Making)

	Subject: Iron Making								
Program	: B. Tech i	n Metallur	gical Engi	neering		Subject Code:	MME0402	Semest	er: IV
Teaching Scheme (Hours per week)			Examii	nation Evaluati	on Scheme (M	arks)			
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	2	4	16/40	0	16/40	24/60	24/60	200

Course Objectives

1. To impart the overall idea of how Iron is produced, the history of Iron making and availability of raw materials for iron production.

2. To know about various techniques of raw material preparation for charging in iron making furnace, construction and operation of iron making furnace and reactions occurring in the furnace, reaction mechanism inside the blast furnace.

CONTENTS

UNIT-I

General: History of iron making. Occurrence, distribution and evaluation of raw materials (iron ore, coal and flux) for iron making. Burden materials and burden preparation: Burden preparation, Burden qualities. Agglomeration- Sintering-process, variables and machines. Pelletization process, Theory of bonding. Mechanism of ball formation, Disc and drum pelletizer, Induration of pellets, cold bonding technique and testing of pellets.

UNIT-II

Blast Furnace (B.F.) Constructional features: Profile, Refractories, Accessories, Charging mechanism, Bell and bell-less charging systems. B.F. - Reactions: Physico-chemical principles of blast furnace. Blast furnace reactions. Reaction in stack, tuyere zone, bosh and hearth. Thermodynamics equilibria, Direct and indirect reduction. Kinetics of iron-oxide reduction, Slagmetal reactions, Desiliconization, Desulphurization.

UNIT-III

B.F. – Operations: Operational steps, Blast furnace irregularities and remedial measures, Blast furnace gas, properties, cleaning and utilization.

UNIT-IV

Alternative Methods of Iron Making: Reduction smelting, Direct reduction processes, Fluidized bed process, Electro thermal process and mini blast furnace.

Iron Making Lab (List of Experiments)

Experiment No	Title
------------------	-------

[10 hours]

[10 hours]

[10 hours]

[10 hours]

1	Identification of raw material for iron making						
2	Bulk density Measurement						
3	Determination of Angle of Repose						
4	Sintering of iron ore fines						
5	Pelletization of iron ore fines						
6	Induration behavior of pellets						
7	Box compression test of hardened or indurated pellets						
8	Tumbling/Drum test of green and indurated pellets						
9	Shatter Test of agglomerated products						
10	Drop Test of agglomerated products						
11	Study of ISP layout						
12	Charge calculations for raw materials in Blast Furnace						
13	Study of different parts of Blast Furnace						
14	Chemical analysis of Iron based products						
15	Study of Briquetting Process						

Course Outcomes

1. To apply the knowledge of various types of routes of iron making to practical scenarios.

2. To innovate the existing ideas and ways of making Iron and developing the technology to make this process energy intensive and cost effective.

Text Books

1. R. H. Tupkary, "Introduction to Modern Iron Making", Khanna Publications, 1st Edition, 2004, ISBN: 9788174090218.

2. A. Ghosh and A. Chatterjee, "Iron Making and Steel Making: Theory and Practice", Prentice Hall, 1st Edition, 2008, ISBN: 9788120332898.

3. A. K. Biswas, "Principles of Blast Furnace Iron Making", SBA Publications, 1st Edition, 1999, ISBN: 9780949917089.

Reference Books

1. A. W. Cramb, "Making, Shaping and Treating of Steels", Association of Iron and Steel Engineers, 11th Edition, 1985, ISBN: 9780930767020.

2. J. G. Peacey and W. G. Davenport, "Blast Furnace: Theory and Practice", Pergamon Press, Oxford, 1st Edition, 1979, ISBN: 9780080232584.

3. J. J. Gupta and Amit Chatterjee, "Blast Furnace Iron Making", SBA Publications, 1st Edition, 1995, ISBN: 9788185164106.

Web Resources

1. NPTEL Course on "Materials and Heat Balance in Metallurgical Processes" (http://nptel.ac.in/courses/113104060/26)

Name of Institute:IITE Name of Faculty: Mr. Monil Salot

Course code: MME0405

Course name: Metal Casting and Solidification

Pre-requisites: None Credit points: 03 Offered Semester: 04

Course Coordinator

Full Name: Mr. Monil Salot Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Course Lecturer

Full Name: Mr. Monil Salot Department with sitting location: Metallurgical Engineering, Bhanwar Building, Lab-004 (GF) Telephone: 9428600336 Email: monilsalot.mt@indusuni.ac.in Consultation times: 3:45-4:20 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

1. To acquire the knowledge about the fundamentals of the casting, basic terminology related to casting process.

2. To make students aware about the alternative method for the manufacturing of component for engineering applications.

Course Outcomes (CO)

1. To apply knowledge about how to manufacture the intricate casting what should be the process parameter, design of pattern, mould, etc.

- 2. To apply the theory about the melting practice of different cast alloy.
- 3. To apply the knowledge to overcome defects generated during casting.

Course Outline

Proposed course mainly deal with fundamentals of metal casting and solidification, its basics, terminologies, importance, processes fro manufacturing and operation of rproducing defect free castings

Method of delivery

- Face to face lectures,
- Numerical and Simulations in Tutorials,
- Model Making
- Video Lectures When and as necessary

Study time

2 Lectures and 2 Hrs. Lab

CO-PO Mapping (PO: Program Outcomes)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	-	2	-	1	1	3	1	-	-	2	-
CO2	3	3	2	1	2	2	2	-	-	-	3	1
CO3	3	3	3	3	-	1	1	-	-	2	2	2

1-Lightly Mapped

2- Moderately Mapped

3- Highly Mapped

Blooms Taxonomyand Knowledge retention(For reference)

(Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection.	2 Information literacy, gathering & processing

Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	5 Written communication 6 Oral communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	5 Written communication 6 Oral communication 7 Teamwork
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal &
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity.	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national,	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact

Practical work:

Experiment No.	Title
1	Introduction to foundry laboratory.
2	To detrmine AFS fineness number and distribution coefficient of agiven sand sample
3	To demonstrate the working of sand muller
4	To determine the clay content of given sand sample
5	To prepare standard samples under identical condition for checking important physical properties of foundry sand
6	To determine compression strength of foundry sand
7	To determine permeability number of green sand, core sand and raw sand
8	To find out the green mould hardness of the sand mould
9	To determine shatter index of the sand sample.
10	To determine moisture content of the prepared sand
11	To prepare core sand
12	To findout the hardness of dried cores made out of core sands

13	To perform peelback test on core sand						
14	To perform hot distortion and tensile tests on core sand						
15	To study the aluminum melting and casting						

Lecture/tutorial times

*Please Refer to Time Table for Lecture Timings, Circulated Separately

Lecture	Room LH 3	
Lecture	Room LH 3	
Lecture	Room LH 3	

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Reference Books

1. P. C. Mukherjee, "Fundamentals of Metal Casting Technology", Oxford & IBH, 1st Edition, 1988, ISBN: 9788120403635.

2. P. R. Beeley, "Foundry Technology", Butterworth-Heinemann, 2nd Edition, 2001, ISBN: 9780750645676.

3. H. F. Taylor and M. C. Flemings, "Foundry Engineering", Wiley Eastern, 1st Edition, 1959, ISBN: 9780471848431.

4. D. Kumar and S. K. Jain, "Foundry Technology", CBS Publications, 1st Edition, 2007, ISBN: 9788123902906.

Text books

Text Books

1. R. W. Heine, C. R. Loper and P. C. Rosenthal, "Principles of Metal Casting", Tata McGraw Hill, 2nd Edition, 2017, ISBN: 9780070993488.

2. P. L. Jain, "Principles of Foundry Technology", Tata McGraw Hill, 2nd Edition, 1987, ISBN: 9780074516980.

Additional Materials

1. NPTEL MOOC Course on "Principles of Casting Technology" (https://onlinecourses.nptel.ac.in/noc17_me11/preview)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

MSE	40% (week 4) Object	tive (1-3)			
Assignments and Problems	05% (week 8) Objective (1-4)				
Mini Project	10% (due week 10)	Objectives (2-5)			
Class Temperament and Innovative					
Thinking	05%(due week 10)	Objectives (1-5)			
Final exam (closed book)	40%	Objectives (1-5)			

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components. *Examination and Assessment to be carried out as per university policy*

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule(subject to change)

•

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Moulding materials: Properties, preparation & testing	C01, C02	BB PPT
Weeks 2	Moulding materials: Properties, preparation & testing	C01, C02	BB PPT
Week 3	Moulding materials: Properties, preparation & testing	C01, C02	BB PPT
Week 4	Production techniques	C01, C02,CO3	BB PPT
Week 5	Production techniques	C01, C02,C03	BB PPT
Week 6	Production techniques	C01, C02,C03	BB PPT
Week 7	Liquid metals and gating & feeding of castings	C01, C02, C03	BB PPT
Week 8	Liquid metals and gating & feeding of castings	C01, C02, C03	BB PPT
Week 9	Liquid metals and gating & feeding of castings	C01, C03	BB PPT
Week 10	Casting design and analysis of casting defects	C01, C03	BB PPT
Week 11	Casting design and analysis of casting defects	C03, C02	BB PPT
Week 12	Casting design and analysis of casting defects	C03, C02	BB PPT

Program Map for Metallurgical Engineering Department

Subject: Metal Casting and Solidification ($OE - 4$)									
Program: B. Tech in Metallurgical Engineering						g Subject Code: MME0405 Semes			
Teaching Scheme (Hours per week) Exa					xamir	nation Evaluation	on Scheme (M	arks)	
Lecture	Tutorial	Practical	Credits	University Theory Examination		University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	0	0	3	16/40		0	24/60	0	200

Course Objectives

1. To acquire the knowledge about the fundamentals of the casting, basic terminology related to casting process.

2. To make students aware about the alternative method for the manufacturing of component for engineering applications.

CONTENTS

<u>UNIT-I</u>

Moulding materials: Properties, preparation & testing:

Functional requirements of moulding materials, moulding practice & special requirements of core sands, foundry sands & binders, sand preparation & systems, silica programme.

UNIT-II

Production techniques:

Manufacture of sand castings, mould production, moulding techniques, cores & core making, melting & casting, finishing operation. Shell, investment and die casting process, centrifugal casting, other special techniques.

<u>UNIT-III</u>

Liquid metals and gating & feeding of castings:

Fluidity of liquid metals, mould factors in metal flow, the gating of casting. The feeding characteristics of alloys, methods for feeding of castings; design modifications, padding chills & insulation, the feeding of cast irons, solidification modeling.

<u>UNIT-III</u>

Casting design and analysis of casting defects:

Preliminary stages & production stages, process & alloy selection, physical design features, quality assessment & control. Categories of defects, gas defects, shrinkage defects, contraction defects, compositional errors & segregation, inclusions & sand defects, shaping faults.

Course Outcomes

[10 hours]

[10 hours]

ज्ञानेन प्रकाशते जगत्

NIVERSITY

[10 hours]

[10 hours]

1. To apply knowledge about how to manufacture the intricate casting what should be the process parameter, design of pattern, mould, etc.

2. To apply the theory about the melting practice of different cast alloy.

3. To apply the knowledge to overcome defects generated during casting.

Text Books

1. R. W. Heine, C. R. Loper and P. C. Rosenthal, "Principles of Metal Casting", Tata McGraw Hill, 2nd Edition, 2017, ISBN: 9780070993488.

2. P. L. Jain, "Principles of Foundry Technology", Tata McGraw Hill, 2nd Edition, 1987, ISBN: 9780074516980.

Reference Books

1. P. C. Mukherjee, "Fundamentals of Metal Casting Technology", Oxford & IBH, 1st Edition, 1988, ISBN: 9788120403635.

2. P. R. Beeley, "Foundry Technology", Butterworth-Heinemann, 2nd Edition, 2001, ISBN: 9780750645676.

3. H. F. Taylor and M. C. Flemings, "Foundry Engineering", Wiley Eastern, 1st Edition, 1959, ISBN: 9780471848431.

4. D. Kumar and S. K. Jain, "Foundry Technology", CBS Publications, 1st Edition, 2007, ISBN: 9788123902906.

Web Resources

1. NPTEL MOOC Course on "Principles of Casting Technology" (https://onlinecourses.nptel.ac.in/noc17_me11/preview)

Name of Institute: Institute of Technology and Engineering Name of Faculty: Dr.K. Santhy

Course code: MME0406 Course name: Recycling of Materials Pre-requisites: Physics, Chemistry Credit points: 3 Offered Semester: 4th Semester

Course Coordinator (weeks XX - XX)

Full name:Dr.K. Santhy Department with siting location: Third Floor (Staff Room) Telephone:9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15-5.00PM

Course Lecturer (weeks xx - XX)

Full name:Dr.K. Santhy Department with siting location: Third Floor (Staff Room) Telephone:9787710922 Email: santhyk.mt@indusuni.ac.in Consultation times: 4.15-5.00PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

To make the students aware about the serious issue and how to combat the problem.
 Classifications of the waste materials, recycling methods, recycling symbol and the technology of recycling within the economic barriers will be dealt with in this course.
 Students will learn how to make public conscious of recycling of wastes and economic consideration.

Course Outcomes (CO)

CO 1: List the types of waste materials [BT-1]

- CO 2: Distinguish reduce, reuse and recycle in waste management. [BT-2]
- CO 3: Comprehend the recycling symbols [BT-3]
- CO 4: Schematically illustrate the process flow of recycling of solid waste. [BT-4]
- CO 5: Criticize advantage and limitation in recycling. [BT-5]
- CO 6: Innovate a way for collection and separation of solid waste. [BT-6].

Course Outline

(Key in topics to be dealt) Solid waste management Recycling process Collection and segregation of different waste materials Symbols for various recycling materials Disposals of harmful waste

Method of delivery

Interactive lectures, Power point presentation

Study time

3 classes per week

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	1	1	-	-	-	-	1
CO2	3	2	1	-	-	-	1	1	-	-	-	1
CO3	3	2		-	-	-	1	1	-	2	-	1
CO4	2	3	1	-	-	-	1	-	-	-	1	1
CO5	2	3	1	-	-	-	1	-	-	-	2	1
CO6	1	3	-	1	-	-	1	1	-	2	1	1

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in	7 Teamwork

different settings. Recognize how culture	
can shape communication.	
Responsible	10 Sustainability, societal &
Understand how decisions can affect	environmental impact
others and make ethically informed	
choices. Appreciate and respect diversity.	
Act with integrity as part of local, national,	
global and professional communities.	

Practical work:

(Mention what practical work this Course involves)

Lecture/tutorial times

(Give lecture times in the format below)

Example:			
Lecture	Monday	2.00 – 3.00 pm	Google classroom
Lecture	Wednesday	10.00 – 11.00 am	Google classroom
Lecture	Tuesday	12.20-1.20 pm	Google classroom

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Reference Materials

1. Material Recycling – Trends and perspectives, Edited by Dimitris S. Achilias, InTech, 2012.

2. Solid Waste Recycling and Processing. Planning of solid waste recycling facilities and programs. Marc J. Rogooff, second edition, Elsevier, 2014.

3. Aluminum Recycling, Mark E. Schelesinger, 2nd edidtion, CRC Press. 2014.

4. Plastic waste Management – NPTEL course.

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:	
Mid Semester	40% (week 4) Objective (1-3)
Presentation/Project	10%
Assignement	5%
Attendance	5%
Final exam (closed book)	40% Objectives (1-5)

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Importance, purpose of recycling	1,5	Interactive teaching using PPT
Weeks 2	Contribution of economy and human and environmental health of recycling	1,5	Interactive teaching using PPT
Week 3	Reduce, reuse and recycling. Recycling statistics in India and World	2	Interactive teaching using PPT
Week 4	Recycling processes. Collection, separation and recycling stages of metals (steel)	2,4	Interactive teaching using PPT
Week 5	Collection, separation, and recycling stages of metals (Aluminum and copper).	2,4	Interactive teaching using PPT
Week 6	Collection, separation, and recycling stages of Plastics. Recyling symbols.	2,3,4	Interactive teaching using PPT
Week 7	Collection, Separation and recycling stages of composite wastes	2,3,4	Interactive teaching using PPT
Week 8	Collection, Separation and recycling stages of glass wastes.	2,3,4	Interactive teaching using PPT
Week 9	Collection, Separation and recycling stages of building wastes.	2,3,4	Interactive teaching using PPT
Week 10	Collection, Separation and recycling stages of accumulator and battery wastes	2,3,4	Interactive teaching using PPT
Week 11	Collection, Separation and recycling stages of electronic wastes	2,3,4	Interactive teaching using PPT
Week 12	Collection, transportation and disposal of harmful wastes.	2,3,4	Interactive teaching using PPT
Week 13	Revision	5,6	Interactive teaching using PPT

[10 hours]

ज्ञानेन प्रकाशते जगत NDUS

NIVERSITY

				•	<u> </u>					
Program	: B. Tech i	n Metallur	gical Engi	neering		Subject Code:	MME0406		Semeste	er: IV
Teachiı	ng Scheme	(Hours pe	rs per week) Examination Evaluation Scheme (Marks)							
Lecture	Tutorial	Practical	Credits	Univer Theo Examina	rsity ry ation	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Con In Eva () Pr	ttinuous ternal luation CIE)- actical	Total
3	0	0	3	16/4	0	0	24/60		0	100

Subject: Recycling of Materials (OE - 5)

Course Objectives

1. To make the students aware about the serious issue and how to combat the problem.

2. Classifications of the waste materials, recycling methods, recycling symbol and the technology of recycling within the economic barriers will be dealt with in this course.

3. Students will learn how to make public conscious of recycling of wastes and economic consideration.

CONTENT

UNIT-I

Definition of terms, recycling and recovery.

Importance, purpose, and contribution of economy and human and environmental health of recycling. Recycling symbols, Recyclable wastes. Recycling statistics in India and World.

UNIT-II

Defining the stages of recycling processes.

Collection, Separation and recycling stages of plastic wastes, steel/stainless steel, aluminum, and copper wastes, and recycling symbols.

UNIT-III

Collection, Separation and recycling stages of composite wastes, glass wastes, building wastes, and recycling symbols.

UNIT-IV

[10 hours] Collection, Separation and recycling stages of accumulator and battery wastes, electronic wastes, and recycling symbols.

Collection, transportation and disposal of harmful wastes.

Course Outcomes

1. The students will be made familiar with different types of waste materials and their disposal problems. Thus, necessitating the knowledge on recycling of the waste materials.

2. Distinguish the recycling, recovery, reuse, reduce and disposal of wastes.

- 3. Comprehend the recycling symbols.
- 4. The students will be able to know about the collection and separation systems of wastes.
- 5. The students will be able to analyses awareness studies to public.

[10 hours]

[10 hours]

Reference Books1. Material Recycling – Trends and perspectives, Edited by Dimitris S. Achilias, InTech, 2012.

Name of Institute: IITE Name of Faculty: Dr.Sujoy Chaudhury

Course code: MME0403

Course name: Transport Phenomena

Pre-requisites: Physics Credit points: 4 Offered Semester: 4

Course Coordinator (weeks XX - XX)

Full Name: Sujoy K. Chaudhury Department with sitting location: Materials and Metallurgical Engineering Department, Ground floor, Met. Lab. 3, Bhanwar Building Telephone: 8469943117 Email: sujoychaudhury.mt@indusuni.ac.in Consultation times: 3:30 PM – 4:30 PM

Course Lecturer (weeks xx - XX)

Full Name: Sujoy K. Chaudhury Department with sitting location: Materials and Metallurgical Engineering Department, Ground floor, Met. Lab. 3, Bhanwar Building Telephone: 8469943117 Email: sujoychaudhury.mt@indusuni.ac.in Consultation times: 3:30 PM – 4:30 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

- 1. To provide knowledge about the basic concept of heat transfer and its different modes.
- 2. To analyze different modes of heat transfer with examples in day to day life.

3. To demonstrate the application of various factors & mathematical equations governing the heat transfer in the system.

Course Outcomes (CO)

CO 1: Students will able to define constitutive laws as to apply to fluid flow, heat and mass transfer. [BT-1]

CO 2: Students will able to apply Navier-Stoke equation and Bernoulli's equation for solving fluid problems. [BT-3]

CO 3: Students will able design energy efficient systems. [BT-6]

CO 4: Students will be able to demonstrate shell balances for heat, momentum and mass transfer to obtain differential equation describing the velocity, temperature and concentration gradient. [BT-2]

CO 5: Students will able to determine the concentration profile and mass conduction equation analogous to heat conduction equation. [BT-5] CO 6: Students will able to analyze and quantify the kinetics of the processes.

Course Outline

The proposed course deals Transfer of Heat, Mass and Fluid .

Method of delivery

(Face to face lectures, self study material, Active Learning Techniques)

Study time

3 lectures + 1 hours Tutorial+ 2 hours Laboratory per week

CO-PO Mapping (PO: Program Outcomes)

	Transport Phenomena (MME0403)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	-	-	I	-	-	2
CO2	2	2	3	2	-	-	-	-	-	-	-	-
CO3	-	-	2	-	-	-	-	-	-	-	-	-
CO4	2	-	3	2	-	-	-	-	-	-	-	1
CO5	2	3	2	2	-	-	-	-	-	-	-	-
CO6	2	2	1	2	-	-	-	-	-	-	-	
MME0403	2.2	2.25	2.16	2	1	2	-	-	-	-	-	1.5

Blooms Taxonomyand Knowledge retention(For reference) (Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
	Graduate
	Capabilities
Informed	1 Professional
Have a sound knowledge of an area of study or profession	knowledge, grounding
and understand its current issues, locally and	& awareness
internationally. Know how to apply this knowledge.	
Understand how an area of study has developed and how it	
relates to other areas.	
Independent learners	2 Information literacy,
Engage with new ideas and ways of thinking and critically	gathering & processing
analyze issues. Seek to extend knowledge through ongoing	
research, enquiry and reflection. Find and evaluate	
information, using a variety of sources and technologies.	
Acknowledge the work and ideas of others.	
Problem solvers	4 Problem solving skills
Take on challenges and opportunities. Apply creative,	
logical and critical thinking skills to respond effectively.	
Make and implement decisions. Be flexible, thorough,	
innovative and aim for high standards.	
Effective communicators	5 Written
Effective communicators Articulate ideas and convey them effectively using a range	5 Written communication
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in	5 Written communication 6 Oral communication
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape	5 Written communication 6 Oral communication 7 Teamwork
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	5 Written communication 6 Oral communication 7 Teamwork
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability,
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal &
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity.	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and	5 Written communication 6 Oral communication 7 Teamwork 10 Sustainability, societal & environmental impact

Practical work: Heat And Fluid Transfer modes and their calculations

Lecture/tutorial times

(Give lecture times in the format below)

Example:			
Lecture	Monday	11:25 am –12:25 pm	Room LH 4
Lecture	Thursday	1:00 –1:55 am	Room LH 4
Lecture	Friday	1:00 –1:55 am	Room LH 4
Tutorial	Monday	1:55am – 3:45 pm	Room Lab 1
Practicals	Wednesday	10:30am - 12:20pm	Room Lab 3
Practicals	Friday	10:30am - 12:20pm	Room Lab 3

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

1. A. K. Mohanty, "Rate Processes in Metallurgy", Prentice Hall India Learning Private Limited, 3rd Edition, 2009, ISBN: 9788120335912.

2. V. Gupta, "Elements of Heat and Mass Transfer", New Age International Publishers, 1st Edition, 1995, ISBN: 9788122408003.

3. J. H. Szekely and N. J. Themelis, "Rate Phenomena in Process Metallurgy", John Wiley & Sons, 1st Edition, 1971, ISBN: 9780471843030.

4. D. R. Poirier and G. H. Geiger, "Transport Phenomena in Materials Processing", John Wiley & Sons, 1st Edition, 1998, ISBN: 9780873392723.

Additional Materials

1. R. B. Bird, W. E. Stewart and E. N. Lightfoot, "Transport Phenomena", Wiley, 2nd Edition, 2006, ISBN: 9788126508082.

2. M. Iguchi and O. J. Ilegbusi, "Basic Transport Phenomena in Materials Engineering", Springer Nature, 1st Edition, 2014, ISBN: 9784431540199.

3. D. R. Gaskell, "An Introduction to Transport Phenomena in Materials Engineering", Momentum Press, 2nd Edition, 2012, ISBN: 9781606503553.

4. J. Welty, C.E. Wicks, G.L. Rorrer and R.E. Wilson, "Fundamentals of Momentum, Heat and Mass Transfer", John Wiley & Sons, 5th Edition, 2012, ISBN: 9780470128688.

Web Resources

. NPTEL MOOC Course on "Transport Phenomena" (https://onlinecourses.nptel.ac.in/noc17_ch11/preview) 2. SWAYAM MOOC Course on "Transport Phenomena"

(https://swayam.gov.in/course/3719-transport-phenomena)
3. EdX Online Course on "The Basics of Transport Phenomena"
(https://courses.edx.org/courses/course-v1:DelftX+TP101x+1T2017/info)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:		
Class Activities	05%	
Assignment	10%	
Attendance	05%	
Mid semester	40%	
Final exam (closed book)	40%	

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -1% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

(Mention quiz, assignment submission, breaksetcas well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Fluid flow and its relevance to mass transfer. General mass transport equation. Modes of mass transfer. Film and boundary layer theories.		BB, PPT
Weeks 2	Diffusion, Generalized diffusion equation. Diffusivity in gases, liquids and solids. Steady, diffusion. Pseudo- steady diffusion.		BB, PPT
Week 3	Diffusion through porous solids. Convective mass transfer- Mass transfer in fluid at solid-fluid interface.		BB, PPT
Week 4	Mass transfer between two fluids. Mass transfer v/s chemical control, enhancement of process rates. Applications in metallurgical system		BB, PPT
Week 5	Definition and classification of fluids. Viscosity, Newtonian and non- Newtonian fluids.		BB, PPT
Week 6	Viscous and non-viscous fluids. General features of fluid flow		BB, PPT
Week 7	Laminar and turbulent flow, Newton's law of viscosity, Pascal's law.		BB, PPT
Week 8	Differential mass balance (continuity equation). Differential momentum balance (equation of motion).		BB, PPT
Week 9	Navier Stokes Equation. Application of Differential Balance Equation. Overall mass balance and momentum balance.		BB, PPT
Week 10	Euler's equation, Bernoulli's equation. Bernoulli's Equation,		BB, PPT
Week 11	Applications of Bernoulli's Equation, Flow through porous media.		BB, PPT
Week 12	Modes of heat transfer. Conduction of heat through solid. Steady and unsteady state.		BB, PPT

		ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 13	Fourier law of heat conduction. General equation of heat conduction in Cartesian co-ordinate, spherical and cylindrical systems.	BB, PPT
Week 14	Convective heat transfer. Free and forced convection. Application dimensional analysis of effective boundary layer.	BB, PPT
Week 15	Aspects of Radiative Heat Transfer. Reflection, absorption and transmission of radiation. Black body radiation. Planck's Law. Wein's distribution Law. Heat transfer between two bodies by radiation. Lambert's Law	BB, PPT

	Subject: Transport Phenomena								
Program: B. Tech in Metallurgical Engineering					Subject Code:	MME0403	Semest	er: IV	
Teachi	ng Scheme	(Hours per	r week)	E	Examination Evaluation Scheme (Marks)				
Lecture	Tutorial	Practical	Credits	Univers Theor Examina	sity ry ation	University Practical Examination	Continuous Internal Evaluation (CIE)- Theory	Continuous Internal Evaluation (CIE)- Practical	Total
3	1	2	5	16/40	0	16/40	24/60	24/60	200

Course Objectives

1. To provide knowledge about the basic concept of heat transfer and its different modes.

2. To analyze different modes of heat transfer with examples in day to day life.

3. To demonstrate the application of various factors & mathematical equations governing the heat transfer in the system.

CONTENTS

<u>UNIT-I</u>

Fluid flow and its relevance to mass transfer. General mass transport equation. Modes of mass transfer. Film and boundary layer theories. Diffusion, Generalized diffusion equation. Diffusivity in gases, liquids and solids. Steady, diffusion. Pseudo-steady diffusion. Diffusion through porous solids. Convective mass transfer- Mass transfer in fluid at solid-fluid interface. Mass transfer between two fluids. Mass transfer v/s chemical control, enhancement of process rates. Applications in metallurgical system

<u>UNIT-II</u>

[10 hours] Definition and classification of fluids. Viscosity, Newtonian and non- Newtonian fluids. Viscous and non-viscous fluids. General features of fluid flow. Laminar and turbulent flow, Newton's law of viscosity, Pascal's law.

<u>UNIT-III</u>

Differential mass balance (continuity equation). Differential momentum balance (equation of motion). Navier Stokes Equation. Application of Differential Balance Equation. Overall mass balance and momentum balance. Euler's equation, Bernoulli's equation. Bernoulli's Equation, Applications of Bernoulli's Equation, Flow through porous media.

UNIT-IV

Modes of heat transfer. Conduction of heat through solid. Steady and unsteady state. Fourier law of heat conduction. General equation of heat conduction in Cartesian co-ordinate, spherical and cylindrical systems.

Convective heat transfer. Free and forced convection. Application dimensional analysis of effective boundary layer.

Aspects of Radiative Heat Transfer. Reflection, absorption and transmission of radiation. Black body radiation. Planck's Law. Wein's distribution Law. Heat transfer between two bodies by radiation. Lambert's Law.

[10 hours]

[10 hours]

[10 hours]

Transport Phenomena Lab (List of Experiments)

Experiment No.	Title
1	To study about various fluid properties and fluid flows.
2	To determine Reynold's number for fluid flow
3	Measurement of pressure difference using manometers
4	To verify Bernoulli's theorem.
5	To apply Bernoulli's equation to Venturimeter
6	To apply Bernoulli's equation to Orificemeter
7	To study the fundamentals of heat transfer
8	To determine thermal conductivity of insulating powder using sphere in sphere method.
9	To measure overall heat transfer coefficient for given composite wall with help of composite wall apparatus.
10	To determine temperature distribution and the effectiveness of fin.
11	To determine the surface heat transfer coefficient for a vertical tube losing heat by natural convection.
12	To determine convective heat transfer coefficient in force convection
13	To determine Stefan-Boltzmann constant
14	To determine emissivity for the given surface
15	Study of mass transfer

Course Outcomes

1. To solve different numerical pertaining to all three modes of heat transfer for different systems.

2. To demonstrate the phenomena of conduction, convection & Radiation by conducting laboratory scale experiments.

3. To make the students understand the concept of fluid behavior & its relevance for different modes of mass transfer.

4. To analyze the mass & momentum balance equations to understand the diffusion phenomenon in metallurgical systems.

Text Books

1. A. K. Mohanty, "Rate Processes in Metallurgy", Prentice Hall India Learning Private Limited, 3rd Edition, 2009, ISBN: 9788120335912.

2. V. Gupta, "Elements of Heat and Mass Transfer", New Age International Publishers, 1st Edition, 1995, ISBN: 9788122408003.

3. J. H. Szekely and N. J. Themelis, "Rate Phenomena in Process Metallurgy", John Wiley & Sons, 1st Edition, 1971, ISBN: 9780471843030.

4. D. R. Poirier and G. H. Geiger, "Transport Phenomena in Materials Processing", John Wiley & Sons, 1st Edition, 1998, ISBN: 9780873392723.

Reference Books

1. R. B. Bird, W. E. Stewart and E. N. Lightfoot, "Transport Phenomena", Wiley, 2ndEdition, 2006, ISBN: 9788126508082.

2. M. Iguchi and O. J. Ilegbusi, "Basic Transport Phenomena in Materials Engineering", Springer Nature, 1st Edition, 2014, ISBN: 9784431540199.

3. D. R. Gaskell, "An Introduction to Transport Phenomena in Materials Engineering", Momentum Press, 2nd Edition, 2012, ISBN: 9781606503553.

4. J. Welty, C.E. Wicks, G.L. Rorrer and R.E. Wilson, "Fundamentals of Momentum, Heat and Mass Transfer", John Wiley & Sons, 5th Edition, 2012, ISBN: 9780470128688.

5. F. P. Incropera, D. P. Dewitt and T. L. Bergman, "Fundamentals of Heat and Mass Transfer".

6. Y. A. Cengel and A. J. Ghajar, "Heat and Mass Transfer".

Web Resources

1. NPTEL MOOC Course on "Transport Phenomena"

(https://onlinecourses.nptel.ac.in/noc17_ch11/preview)

2. SWAYAM MOOC Course on "Transport Phenomena"

(https://swayam.gov.in/course/3719-transport-phenomena)

3. EdX Online Course on "The Basics of Transport Phenomena"

(https://courses.edx.org/courses/course-v1:DelftX+TP101x+1T2017/info)

4. EdX Online Course on "Advanced Transport Phenomena"

(https://courses.edx.org/courses/course-v1:DelftX+TP102x+3T2016/info)