

Name of Institute: ITE Name of Faculty: Asst. Prof. Miloni Ganatra

Course code: EC0524

Course name: System Verilog for Verification

Pre-requisites: Digital Electronics & Digital System Design using HDL Credit points: 4 Offered Semester: 5th

Course Coordinator (weeks 01 - 12)

Full Name: Asst. Prof. Miloni Ganatra Department with siting location: E.C -Machine Lab, 2nd Floor, Bhanwar Building Telephone:9974592124 Email: miloniganatra.ec@indusuni.ac.in Consultation times: 2nd & 4th Saturday.

Course Lecturer (weeks 01 - 12)

Full Name: Asst. Prof. Miloni Ganatra Department with siting location: E.C -Machine Lab, 2nd Floor, Bhanwar Building Telephone:9974592124 Email: miloniganatra.ec@indusuni.ac.in Consultation times: 2nd & 4th Saturday.

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1) The main objective of this course is to learn to design a testbench for verification of digital designs using systemverilog.
- 2) This course provides methods and guidelines to design an effective testbench for digital designs.
- 3) The information on basic components, required to design a testbench, are covered in this course.

Course Outcomes (CO)

At the end of the course, a student will be able to:

At the end of this course student will be able to:

- 1) Understand coverage-driven random testing in a layered test-bench environment.
- 2) Understand new System Verilog data types such as arrays, structures, enumerated types, and packed variables and Procedural Statements and Routines.
- 3) Design OOP to build classes, construct objects, and use handles.
- 4) Create multiple threads in your testbench, use interprocess communication to exchange data between these threads and synchronize them.
- 5) Understand different types of coverage and how you can use functional coverage to measure your progress as you follow a verification plan.

Course Outline

Unit 1

[10 hours]

VERIFICATION GUIDELINES

- Introduction
- The Verification Process
- The Verification Plan
- The Verification Methodology Manual
- Basic Testbench Functionality
- Directed Testing
- Methodology Basics
- Constrained-Random Stimulus
- What Should You Randomize?
- Functional Coverage
- Testbench Components
- Layered Testbench
- Building a Layered Testbench
- Simulation Environment Phases
- Maximum Code Reuse
- Testbench Performance

DATA TYPES

- Built-in Data Types
- Fixed-Size Arrays
- Dynamic Arrays
- Queues
- Associative Arrays
- Linked Lists
- Array Methods
- Choosing a Storage Type
- Creating New Types with typedef

- Creating User-Defined Structures
- Enumerated Types
- Constants
- Strings
- Expression Width
- Net Types

Unit 2

[13 hours]

PROCEDURAL STATEMENTS AND ROUTINES

- Procedural Statements
- Tasks, Functions, and Void Functions
- Task and Function Overview
- Routine Arguments
- Returning from a Routine
- Local Data Storage
- Time Values

BASIC OOP

- OOP Terminology
- Creating New Objects
- Object Deallocation
- Using Objects
- Static Variables vs. Global Variables
- Class Routines
- Defining Routines Outside of the Class
- Scoping Rules
- Using One Class Inside Another
- Understanding Dynamic Objects
- Copying Objects
- Public vs. Private

Unit 3

[13 hours]

CONNECTING THE TESTBENCH AND DESIGN

- Separating the Testbench and Design
- The Interface Construct
- Stimulus Timing
- Interface Driving and Sampling
- Connecting It All Together
- Top-Level Scope
- Program Module Interactions
- SystemVerilog Assertions
- The Four-Port ATM Router

THREADS AND INTERPROCESS COMMUNICATION

- Working with Threads
- Interprocess Communication
- Events
- Semaphores
- Mailboxes

• Building a Testbench with Threads and IPC

Unit 4

[10 hours]

ADVANCED OOP AND GUIDELINES

- Introduction to Inheritance
- Factory Patterns
- Type Casting and Virtual Methods
- Composition, Inheritance, and Alternatives
- Copying an Object
- Callbacks

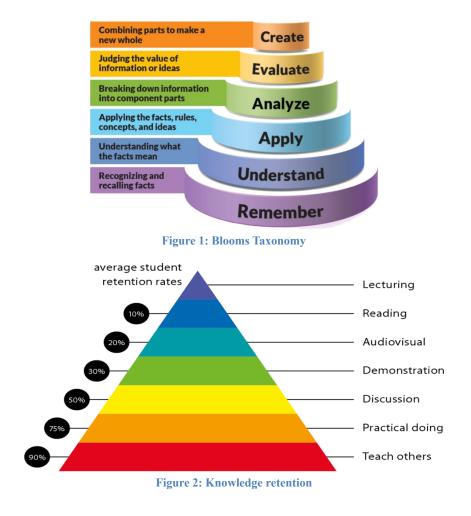
FUNCTIONAL COVERAGE

- Coverage Types
- Functional Coverage Strategies
- Simple Functional Coverage Example
- Anatomy of a Cover Group
- Triggering a Cover Group
- Data Sampling
- Cross Coverage
- Coverage Options
- Parameterized Cover Groups
- Analyzing Coverage Data
- Measuring Coverage Statistics During Simulation

Method of delivery

(Face to face lectures, Online Platform, Active Learning Techniques, PPT, Chalk Board)

Study time


(9 hours per week including class attendance)

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	2	1	2	2	-	-	3	-	-	-
CO2	2	1	3	3	2	1	2	-	-	-	-	-
CO3	2	2	2	2	3	2	2	-	-	-	-	-
CO4	2	2	3	2	1	-	-	-	-	-	-	-
CO5	1	3	1	3	2	2	-	-	-	-	-	-
CO6	2	1	3	2	1	1	2	-	-	-	-	-

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed	1 Professional knowledge, grounding &
Have a sound knowledge of an area of	awareness
study or profession and understand its	
current issues, locally and internationally.	
Know how to apply this knowledge.	
Understand how an area of study has	

developed and how it relates to other	
areas. Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible	10 Sustainability, societal &
Understand how decisions can affect	environmental impact
others and make ethically informed choices. Appreciate and respect diversity.	
Act with integrity as part of local, national,	
global and professional communities.	

Practical work:

Lab Experiments & Outcome of Sensor & Transducer Lab:

Outcome:

At the end of the course, student will be able to:

- 1. Understand and use the SystemVerilog RTL design and synthesis features, including new data types, literals, procedural blocks, statements, and operators, relaxation of Verilog language rules, fixes for synthesis issues, enhancements to tasks and functions, new hierarchy and connectivity features, and interfaces.
- 2. Appreciate and apply the SystemVerilog verification features, including classes, constrained random stimulus, coverage, strings, queues and dynamic arrays, and learn how to utilize these features for more effective and efficient verification.

Subject-Code-EC 0524, Semester: 5th (2021)

Lab Experiments:

- Lab 1. Familiarization with Synopsys VCS
- Lab 2. Structural Modeling of a Master-Slave Flip-Flop
- Lab 3. Hierarchical Modeling
- Lab 4. Behavioral Modeling of a Counter
- Lab 5. Scalable Multiplexer
- Lab 6. Sum of Products
- Lab 7. Register File Modeling
- Lab 8. Arithmetic-Logic Unit Modeling
- Lab 9. Sequence Controller
- Lab 10. Final Project: The RISC-Y CPU

Lecture/tutorial times

(Give lecture times in the format below)

Example:

Lecture Monday 2:00-3:00 PM Wednesday 10.00 – 11.00 AM Thursday 11:10-12:10 PM

Laboratory: Thursday: 9:00- 11:00 PM

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Text books:

1. SystemVerilog for Verification A Guide to Learning the Testbench Language Features by Spear Chris and Tumbush Greg.

Reference Books:

1. SystemVerilog Assertions and Functional Coverage by Guide to Language, Methodology and Applications by Ashok Mehta

Additional Materials (Web Resources)

1.https://nptel.ac.in/courses/108/103/108103179/

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

CIE 60 marks: (40 marks mid semester examination + 20 marks internal evaluation)

Internal Evaluation (20 Marks): 03 marks: attendance 10 marks: Seminar Presentation 07 marks: Quiz -Final exam (closed book)—40 Marks-

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

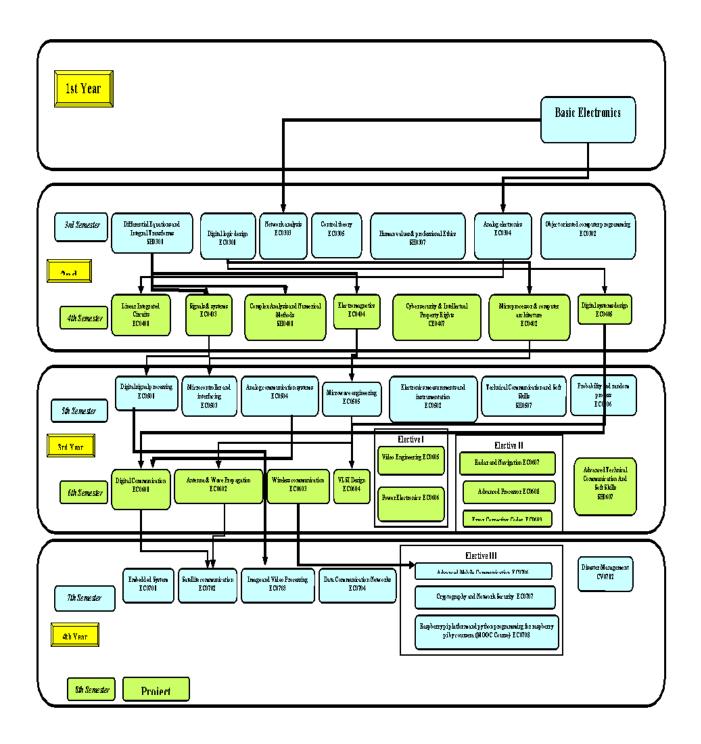
Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•


(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction, The Verification Process, The Verification Plan, The Verification Methodology Manual, Basic Testbench Functionality, Directed Testing Methodology Basics	CO1, CO2, CO4	Board,Chalk, PPT
Weeks 2	Constrained-Random Stimulus ,What Should You Randomize?,Functional Coverage,Testbench Components,Layered Testbench,Building a Layered Testbench,Simulation Environment Phases,Maximum Code Reuse,Testbench Performance	CO1, CO2, CO5	Board,Chalk, PPT
Week 3	Built-in Data Types,Fixed-Size Arrays,Dynamic Arrays,Queues,Associative Arrays,Linked Lists,Array Methods,Choosing a Storage Type,Creating New Types with typedef,Creating User-Defined Structures,Enumerated Types,Constants,Strings,Expression Width Net Types	CO1, CO2, CO3	Board,Chalk, PPT
Week 4	Procedural Statements, Tasks, Functions, and Void Functions, Task and Function Overview, Routine Arguments, Returning from a Routine, Local Data Storage, Time Values	CO1, CO2, CO5	Board,Chalk, PPT
Week 5	OOP Terminology,Creating New Objects,Object Deallocation,Using Objects,Static Variables vs. Global Variables,Class Routines, Defining Routines Outside of the Class	CO1, CO2, CO3	Board,Chalk, PPT

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 6	Scoping Rules,Using One Class Inside Another,Understanding Dynamic Objects,Copying Objects,Public vs. Private	CO1, CO2, CO3	Board,Chalk, PPTMid Sem Examination
Week 7	Separating the Testbench and Design,The Interface Construct ,Stimulus Timing,Interface Driving and Sampling,Connecting It All Together	CO1, CO2, CO3, CO4	Board,Chalk, PPT
Week 8	Top-Level Scope,Program – Module Interactions,SystemVerilog Assertions,The Four-Port ATM Router	CO1, CO2, CO3, CO4	Board,Chalk, PPT
Week 9	Working with Threads, Interprocess Communication, Events, Semaphores, M ailboxes, Building a Testbench with Threads and IPC	CO1, CO2, CO3, CO4	Board,Chalk, PPT
Week 10	Introduction to Inheritance,Factory Patterns,Type Casting and Virtual Methods,Composition, Inheritance, and Alternatives,Copying an Object, Callbacks	CO1, CO2, CO3, CO5	Board,Chalk, PPT
Week 11	Coverage Types,Functional Coverage Strategies,Simple Functional Coverage Example,Anatomy of a Cover Group,Triggering a Cover Group,Data Sampling	CO1, CO2, CO3, CO5	Board,Chalk, PPT
Week 12	CrossCoverage, CoverageOptions, ParameterizedCoverGroups, AnalyzingCoverageData, MeasuringCoverageDuring SimulationStatistics	CO1, CO2, CO3, CO5	Board,Chalk, PPT

PROGRAM MAP:

Name of Institute: Institute of Technology and Engineering Name of Faculty: Asst. Prof Abhishek Vaghela

Course code: Course name: Microprocessor and Microcontroller Pre-requisites: Digital Electronics, Microprocessor and Computer Architecture

Architecture Credit points: 4 Offered Semester: IV

Course coordinator (weeks 12)

Full name: Asst. Prof. Abhishek Vaghela Department with siting location: EC Department, Signal Processing and Simulation Lab (Lab – 6) Telephone: 3204 Email: abhishekvaghela.ec@indusuni.ac.in Consultation times: Monday – Friday (4:00 PM to 4: 50 PM)

Course lecturer (weeks 12)

Full name: Asst. Prof. Abhishek Vaghela Department with siting location: EC Department, Signal Processing and Simulation Lab (Lab – 6) Telephone: 3204 Email: abhishekvaghela.ec@indusuni.ac.in Consultation times: Monday – Friday (4:00 PM to 4: 50 PM)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1) To introduce students to the architecture and operation of microprocessor & microcontrollers.
- 2) To familiarize students with programming of microcontroller.
- 3) To Introduce students to Embedded C programming
- 4) To familiarize students to interface various peripherals to the microcontroller.
- 5) To provide a strong foundation for designing real world applications using microcontroller.

Course Outcomes (CO)

- 1) Asses and solve basic binary math operations using microcontroller.
- 2) Apply knowledge and demonstrate programming proficiency using various addressing modes and data transfer instructions of the target microcontroller.
- 3) Compare accepted standards and guidelines to select appropriate microcontroller to meet the specified performance requirement.
- 4) Analyse assembly and C language programs of a microcontroller
- 5) Design electrical circuitry for interfacing various peripherals to the microcontroller.
- 6) Evaluate assembly and C language programs and download the machine code that will provide solutions to the real-world problems.

Course Outline

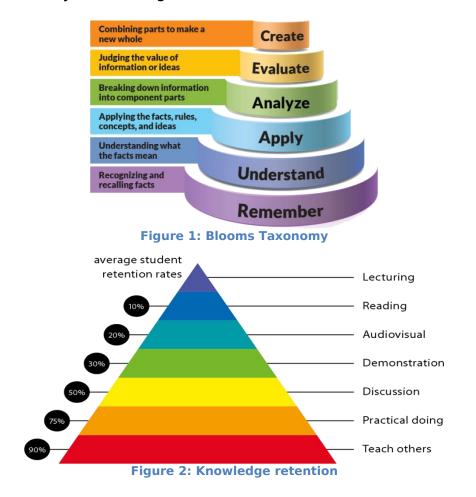
Unit	Contents	Total Hours
1	Microprocessor Based Systems: Microprocessor, Microcontroller, Von Neumann and Harvard Architecture, CISC and RISC Processors	
	8085 Microprocessor: Architectural Block Diagram, Pin diagrams, Pin functions, Bus Organization, Internal operations and registers, Instruction set of 8085 processor	
2	8051 Microcontroller architecture: Introduction to MCS -51 Family microcontrollers, Architectural block Diagram, Pin diagram, General Purpose and Special Function Registers, , Oscillator and clock circuit, Reset circuit, I/O Port circuits, Memory organization, Internal program and data memory, Introduction to program development tools	
	8051 Assembly language instructions : Programming model of 8051, Addressing modes, data transfer instructions, I/O Port programming, Arithmetic and Logical instructions, Bit level instructions, Branching instructions (Jump and loop Jump and call), Concept of stack, subroutine and related instructions.	
	8051 Programming in C:Data types in 8051 C: programming for time delay, I/O programming in 8051 C, Logic operations in 8051 C, Control statements and loops in embedded C, Functions and Arrays in	

	embedded C, Data conversion programs in 8051 C, , Accessing code ROM space using 8051 C.	
3	8051 Timer/Counter and Programming: Use of counter as timer, Timer/Counters and associated registers, Various modes of timer/counter operations, Time delay programs in Assembly language/ Embedded C.	10
	8051 Serial Port and Programming: Basics of serial communication, RS232 standards, 8051 connection to RS232, Serial data input/output and associated registers, Various modes of serial data communication, serial data communication programs in Assembly language/ Embedded C	
	8051 Interrupts: Concept of Interrupt: interrupt versus polling, Types of interrupts in 8051, Reset, interrupt control and associated registers, interrupt vectors, Interrupt execution, RETI instruction, software generated interrupt, interrupt handler subroutine for timer/counter and serial data transmission/reception in Assembly language/ Embedded C	
4	Applications and design of microcontroller based systems: Interfacing of LEDs, 7 Segment display device, LCD display, DIP Switches, Push Button switches, Interfacing A/D converter, D/A converter, Relay, opto isolator stepper motor and DC motor	10
	Introduction to ARM Cortex-M processor: Cortex- M processor family, Advantages of the Cortex-M processors, Applications of the ARM Cortex-M processors, Architecture of Cortex - M processor, Introduction to Instruction set and programming of ARM Cortex-M processor	

Method of delivery

Lectures Laboratories

Study time


3 Hour's theory and 2 Hour's Practical session per week

	PO											
CO/PO	1	2	3	4	5	6	7	8	9	10	11	12
1												
2	V											
3		\checkmark								\checkmark		
4		\checkmark										
5			\checkmark									

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Electronics and Communication Engineering Graduate Capabilities
Informed	1 Professional knowledge,
Have a sound knowledge of an area of study or profession and understand its	grounding & awareness
current issues, locally and	
internationally. Know how to apply this	
knowledge. Understand how an area of	
study has developed and how it relates	
to other areas.	
Independent learners	2 Information literacy,
Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	gathering & processing
Problem solvers	4 Problem solving skills
Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media.	7 Teamwork
Work collaboratively and engage with	
people in different settings. Recognize	
how culture can shape communication. Responsible	10 Sustainability, societal &
Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	environmental impact

Practical	work:
I I deciedi	

Sr.No	Title	Learning Outcomes
1	Introduction to IDE and Assembler directives.	Able to use keil IDE for ALP programming
2	8051 Assembly language programming for addition, subtraction, multiplication and division of two 8-bit numbers .	Able to write assembly language programs of 8051 in keil , able to use Keil IDE
3	8051 Assembly language programming for block data transfer between internal and external memory including overlapping blocks.	Able to write assembly language programs of 8051 in keil , able to use Keil IDE
4	8051 Assembly language programming using Arithmetic instructions	Able to write assembly language programs of 8051 in keil , able to use Keil IDE
5	8051 Assembly language programming using Logical Instructions	Able to write assembly language programs of 8051 in keil , able to use Keil IDE
6	8051 Assembly language programming for code conversions	Able to write assembly language programs of 8051 in keil , able to use Keil IDE
7	8051 Assembly language programming for Timers in different modes.	Able to use timer of 8051 microcontroller
8	I/O port programming in embedded C.	Able to Write embedded c code for I/O port
9	Timers and Counters programming in embedded C for time delay and frequency measurement using ISRs.	Able to write embedded c code for timers and counter
10	Digital clock programming using 7- segment display in embedded C.	Able to interface 7 segment write embedded c code for interfacing 7 segment display.
11	Programming of LCD in embedded C.	Able to interface LCD and write embedded c code for LCD
12	Serial communication and UART programming in Embedded C.	Able to write embedded c code for UART

Lecture/tutorial times

(Give lecture times in the format below)

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

Text books

1. Microprocessor Architecture, Programming, and Applications with the 8085, By Romesh Gaonkar, Penram International Publishing (India) LTD.

2. The 8051 Microcontroller and Embedded Systems Using Assembly and C, 2/e by Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin McKinlay (Second Edition, Pearson Education)

3. The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors, by Joseph Yiu, Publisher: Elsevier, ISBN: 9789351071754, 9351071758

Reference Books:

1. The 8051 Microcontroller & Embedded Systems using Assembly and C By K. J. Ayala, D. V. Gadre (Cengage Learning , India Edition).

2. Using the MCS-51 Microcontrollers By Han Way Huang Oxford Uni Press

3. Programming and Customizing the 8051 Microcontroller by Myke Predko Tata Mcgraw Hill.

Additional Materials

 Microcontroller Course

 (<u>http://nptel.ac.in/courses/Webcourse</u>contents/IITKANPUR/microcontroll ers/micro/ui/TOC.htm)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:			
	Mid Semester Exam	40%	
	Attendance	5%	
	Simulation Project	10%	
	Assignment	5%	
	Final exam (closed book) 409	%	

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

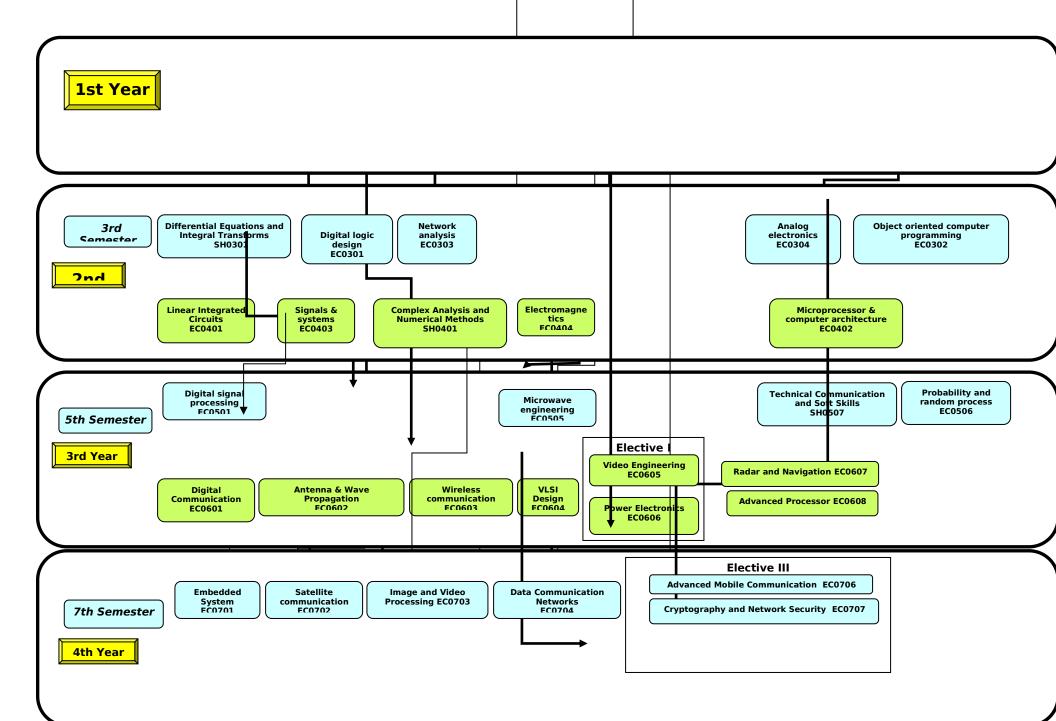
Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment).

Course schedule (subject to change)

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)


Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction to Microprocessor based systems, 8085 architecture , pin functions of 8085	C01,C02	BB,PPT
Weeks 2	Instruction set of 8085	C01,C02	BB,PPT
Week 3	Introduction to 8051 microcontroller, it architecture, Registers, Memory organization	CO2,CO3	BB,PPT
Week 4	Instruction set of 8051, addressing modes of 8051	CO3,CO1,CO2	BB,PPT
Week 5	Embedded C programming of 8051	CO3,CO4,CO5	BB,PPT

Г

Week 6	Timer / Counter programming of 8051 in assembly and C	CO3,CO4,CO5	BB,PPT
Week 7	Serial port programming of 8051 in assembly and C	CO3,CO4,CO5	BB,PPT
Week 8	Interrupt programming of 8051 in assembly and C	CO3,CO4,CO5	BB,PPT
Week 9	Interfacing of Peripherals such as LED, Switch, 7 Segment Display and LCD	CO4,CO5,CO6	BB,PPT
Week 10	Interfacing of A/D and D/A Converter, DC Motor and Stepper motor interfacing	CO5,CO6	BB,PPT
Week 11	Introduction to Cortex-M family, Advantages of Cortex- M, Application of ARM Cortex- M processor	03	BB,PPT
Week 12	Architecture of Cortex - M processor, Introduction to Instruction set and programming of ARM Cortex-M processor	CO3,CO4,CO5	BB,PPT

Name of Institute: Institute of Technology & Engineering Name of Faculty: Dr. Minesh Thaker

Course code: EC0526 Course name:Advanced Electronics

Pre-requisites: Basic Electronics Credit points: 4 Offered Semester: 5th

Course coordinator (weeks 01 - 14)

Full name: Dr. Minesh Thaker Department with siting location: Electronics & Communication Engineering Telephone: 9909039918

Email: mineshthaker.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Dr. Minesh Thaker Department with siting location: Electronics & Communication Engineering Telephone: 9909039918

Email: mineshthaker.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- Analyse the various biasing techniques using JFET/MOSFET, Design the biasing techniques for applications using JFET/MOSFET.
- Analyse the various single tuned ,double tuned and stagger tuned amplifiers, Explain the effect of various tuned amplifiers on bandwidth
- Compare the various optoelectronic devices, Analyse and design the CMOS Opamp

Course Outcomes (CO)

1. To design the circuits using MOSFET, Tuned Amplifier, optoelectronics devices

2. To Construct the circuit and make project using the above said components

3. Compare the various optoelectronic devices, Analyse and design the CMOS Opamp

4. Students will be able to analyse the various single tuned ,double tuned and stagger tuned amplifiers,

5. Students will be able to explain the effect of various tuned amplifiers on bandwidth

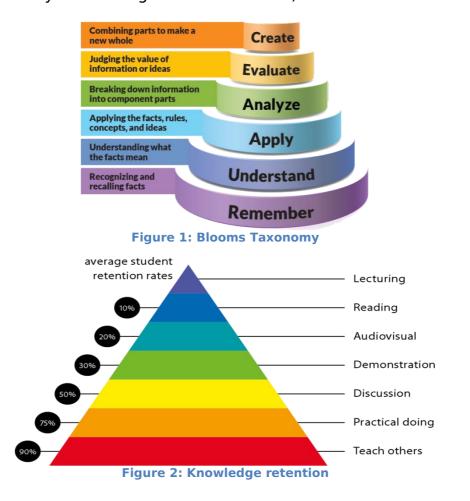
Course Outline

Unit	Topic	S			
No. 1		Amplifier Tuned amplifier Q factor, small signal tuned amplifier, Effect of cascading single mplifiers on bandwidth, Effect of cascading double tuned amplifiers on bandwidth, Stagger			
		mplifier,comparison of tuned amplifiers,large signal tuned amplifiers,Stability of tuned			
	amplifi	er,N eutralization.			
2	Design using FETs JFET biasing techniques, fixed biasing technique ,voltage divider bias,self bias,Trans conductance and drain curves,CS,CD,CG amplifiers MOSFET amplifiers, comparison of MOSFET amplifiers,MOSFET biasing techniques.				
3	Design of CMOS operational amplifier [12hours] OPamp Specifications,Design Approach and stability,Two stage op amps, Compensation,folded cascode theory, common mode feedback, oscillators amplifiers in negative feedback				
4	Opto-e	lectronic Devices spectral response of human eye, photo- conductive sensors, photo-			
	voltaic	sensors, photo-emission sensors, light emitters, LCD, N ixie, tube, Alphanumeric			
		v_{s} ,LCD pannels,plasma display panels, Opto-couplers I ntroduction to memories, nductor memories.			
Text books	:	Electronics Devices and Circuits by S Salivahanan And N Suresh kumar Tata Macgrohil.3rd Edition			
Reference Books/Note s		Design of CMOS Operational Amplifiers by Rasoul Dehghani Artech House,			

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time


3 hours per week Lectures and 2 Hours practical per week

CO-PO Mapping (PO: Program Outcomes)

	P 0 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO1	\checkmark	\checkmark			\checkmark							
CO2	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO3	\checkmark				\checkmark				\checkmark			
CO4	\checkmark				\checkmark							
CO5	\checkmark	\checkmark			\checkmark							
CO6	\checkmark	\checkmark			\checkmark							

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
	Graduate Capabilities

Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work : Not Applicable

Lecture/tutorial times

(Give lecture times in the format below)

Monday-10.00 to 11.00 AM Wednesday: 12.20 to 1.20 PM Thursday: 9:00 to 10:00 AM Friday: 9:00 to 11:00

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

- 1. https://www.edx.org/course/introduction-to-computer-science-and-programming-using-pyt hon-2
- 2. http://www.openculture.com/2017/05/learn-python-with-a-free-online-course-from-mit.ht ml
- 3.https://www.edx.org/course/introduction-to-python-absolute-beginner-3
- 4. https://onlinecourses.nptel.ac.in/noc19_cs40

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks
- 2. Practical CIE 60 marks:
- a. Experiment Performance 30 Marks
- b. File work + Skill Test 20 Marks
- c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available

during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

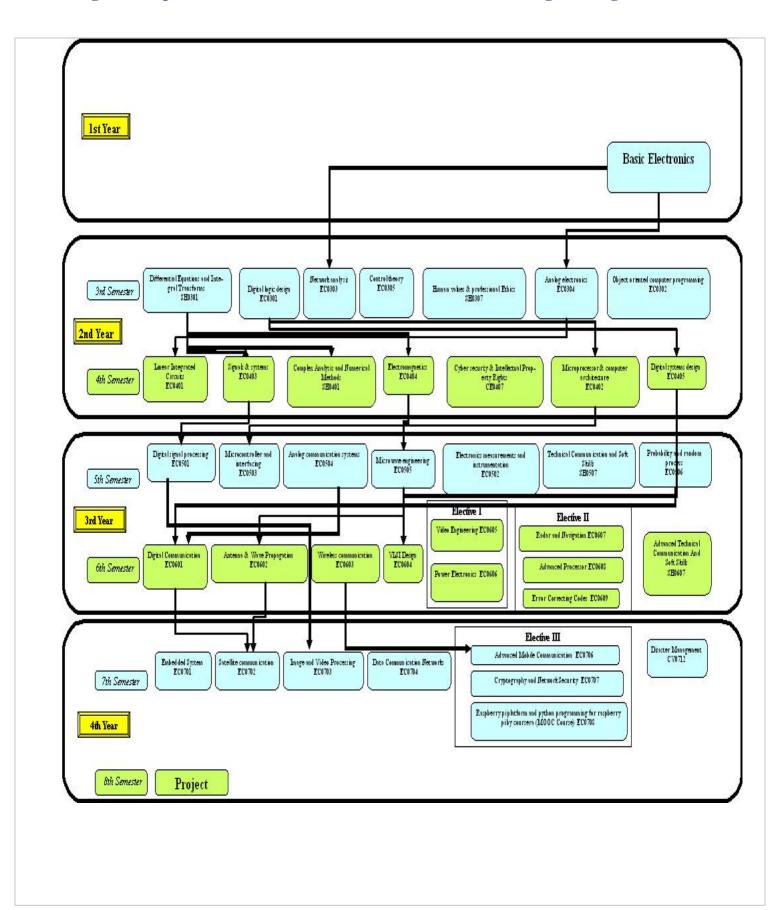
University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.


Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Tuned amplifier Q factor,small signal tuned amplifier,Effect of cascading single tuned amplifiers on bandwidth,Effect of cascading double tuned amplifiers	CO1 CO3	Chalk and talk PowerPoint Presentations
Weeks 2	Stagger tuned amplifier, comparison of tuned amplifiers	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 3	large signal tuned amplifiers, Stability of tuned amplifier, N eutralization.	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 4	JFET biasing techniques, fixed biasing technique ,voltage divider bias,self bias,	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 5	Trans conductance and drain curves,CS,CD,CG amplifiers MOSFET amplifiers,	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 6	comparison of MOSFET amplifiers,MOSFET biasing techniques	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 7	OPamp Specifications, Design Approach and stability, Two stage op amps,	CO2 CO3 CO5	Chalk and talk PowerPoint Presentations
Week 8	Compensation,folded cascode theory, common mode feedback, oscillators amplifiers in negative feedback	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 9	Opto-electronic Devices spectral response of human eye,	CO2 CO3	Chalk and talk PowerPoint Presentations

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 10	photo- conductive sensors, photo- voltaic sensors,	CO2 CO5	Chalk and talk PowerPoint Presentations
Week 11	photo-emission sensors,light emitters,LCD,N ixie,tube,	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 12	Alphanumeric Displays,LCD pannels,plasma display panels	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 13	Opto-couplers I ntroduction to memories, semiconductor memories.	C05	Chalk and talk PowerPoint Presentations
Week 14	Revision		

Program map for B.Tech (Electronics & Communication Engineering)

Name of Institute: Indus Institute of Technology and Engineering (IITE) Name of Faculty: Divyangna Gandhi

Course code: EC0516 Course name: Principles of Communication Systems

Pre-requisites: Various basic mathematics such as Fourier series and Transform, basic electronic and basics of Communication

Credit points: 03 Offered Semester: 5th

Course Coordinator (weeks 15)

Full Name: Divyangna Gandhi Department with sitting location: 2nd Floor, Bhanwar Building, EC Lab 5(Digital and

Networking Lab), IITE - IU

Telephone: 3202 Email: <u>Divyangnagandhi.ec@indusuni.ac.in</u> Consultation times: 4:00PM to 4:45PM

Course Lecturer (weeks 15)

Full Name: Divyangna Gandhi Department with sitting location: 2nd Floor, Bhanwar Building, EC Lab 5(Digital and

Networking Lab), IITE - IU

Telephone: 3202 Email: <u>Divyangnagandhi.ec@indusuni.ac.in</u> Consultation times: 4:00PM to 4:45PM

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

 To understand how the information transfers over a longer distance and different

techniques involved in such communication.

- To analyze system requirements of analog communication systems.
- To understand the need for modulation.
- To understand the generation and detection of various analog modulation

techniques with mathematical analysis.

Subject Code EC0516, Semester: 5th (2021)

- To analyze the noise performance of analog modulation techniques.
- To provide theoretical knowledge of each block in AM and FM receivers.
 To understand the basic operating principles of amplifiers.

Course Outcomes (CO)

 Understand how the information transfers over a longer distance and different

techniques involved in such communication.

- Analyze system requirements of analog communication systems
- Understand the need for modulation.
- Understand the generation and detection of various analog modulation techniques
 - with mathematical analysis.
- To analyze the noise performance of analog modulation techniques
- Provide theoretical knowledge of each block in AM and FM receivers.

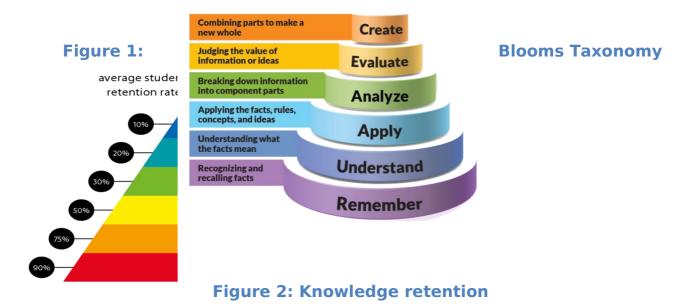
Course Outline

Basic foundation of communication system Modulation system Noise Receiver

Method of delivery

(Face to face lectures, self-study material, Active Learning Techniques)

Study time


(3 Hour's theory)

CO-PO Mapping (PO: Program Outcomes)

PO	PO											
C0	1	2	3	4	5	6	7	8	9	10	11	12
1												
2												
3												
4												
5												
6												

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed	1 Professional knowledge,
Have a sound knowledge of an area	grounding & awareness
of study or profession and	
understand its current issues, locally	
and internationally. Know how to	
apply this knowledge. Understand	
how an area of study has developed	
and how it relates to other areas.	

Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible	10 Sustainability, societal &
Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	environmental impact

Lecture/tutorial times

Lecture	 03.10 - 04.10PM 09.00 - 10.00AM	Online mode Online mode	
	 02:00 - 03.00PM	Online mode	

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Subject Code EC0516, Semester: 5th (2021)

Details of referencing system to be used in written work

Text books

Text books	Modern digital and analog Communication systems, B. P. Lathi, Oxford University Press, 4th Ed, 2010.
	Electronic Communications, Dennis Roddy and John Coolen,
	Pearson, 4 th edition, 2011.
Referen	Taub & Schilling: Principles of Communication Systems,
ce	Tata McGraw-Hill
Books	Leon W.Couch, II: Digital and Analog Communication
	Systems, Pearson, Education (Seventh Edition)

Additional Materials

NPTEL- Lecture	
https://nptel.ac.in/courses/108/104/108104091/	

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:	
Midterm Exam 40%	Objective (1-4)
Presentation 5%	Objectives (1-5)
Attendance 5%	
Tutorial/Assignment 1	0% Objectives (1-4, 6)
Final exam (closed book)	40% Objectives (1-6)

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

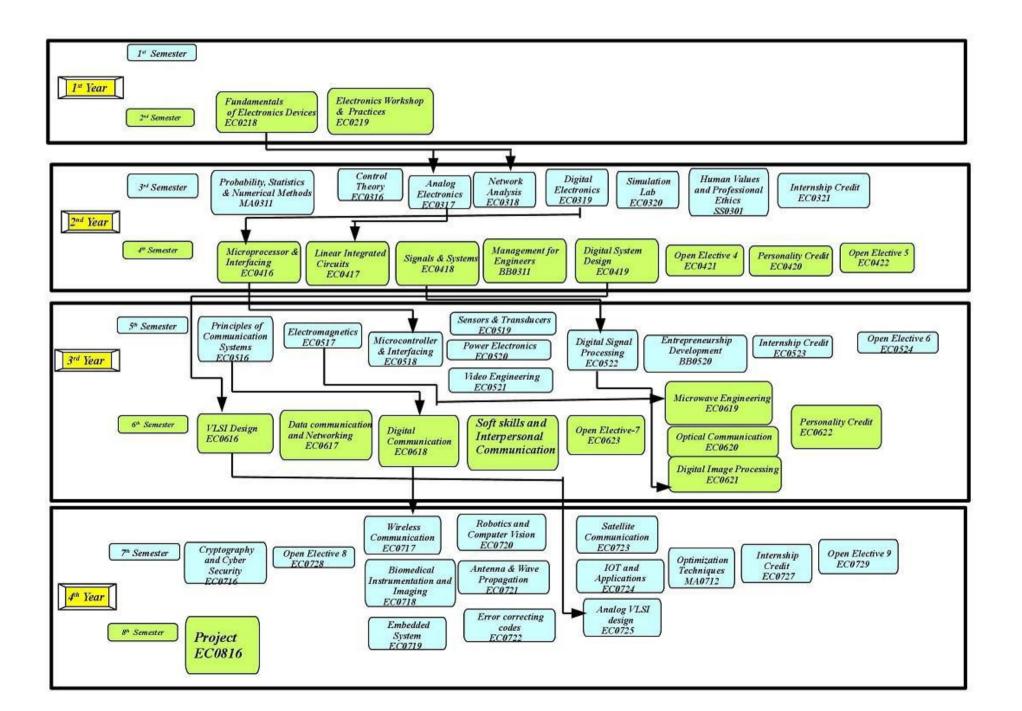
Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)


Course schedule

Week 15	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	To aware students with theoretical and practical syllabus, assessment scheme for theory (CIE, End sem exam), practical (CIE, End sem exam) and all the details about subject activities has to be carry out throughout the semester Introduction to Communication and signals	1	BB,PPT
Weeks 2	Types of Signals, Signals and Vectors, Signal comparison using correlation	1,2	BB,PPT
Week 3	Orthogonal signal set, Fourier Series, Analysis and Transmission of Signals using Fourier Transform, Signal transmission through linear system.	1,2,3,4	BB,PPT
Week 4	Analog and Digital Messages, Parameters of Communication systems: Signal-to-ratio, Channel Bandwidth	2,3	BB,PPT
Week 5	Transmission Bandwidth, Signal Bandwidth, Rate of Communication, Modulation, Redundancy and Coding, Application of Communication Systems	1,5,6	BB,PPT
Week 6	AmplitudeModulation:BasebandandCarrierModulation, Double side band,Double Side band SuppressedCarrier	1,5,6	BB,PPT
Week 7	Amplitude Modulation (AM), Quadrature Amplitude Modulation(QAM), Single Side	5,6	BB,PPT

	Band (SSB), Vestigial Side Band (VSB)		
Week 8	Angle Modulation: Concept of instantaneous frequency, Bandwidth of angle modulated wave, Generation of FM waves	1,2,3	BB,PPT
Week 9	Demodulation of FM, Phase Modulation, Comparison of AM and FM.	3,4	BB,PPT
Week 10	Noise: Introduction, Thermal Noise, Shot Noise, Partition, Noise, Flicker Noise, Performance of AM systems in presence of Noise	1,2,4	BB,PPT
Week 11	Performance of Angle modulated systems in presence of Noise, Pre-emphasis and De- emphasis	1,2,3	BB,PPT
Week 12	Receivers: Super heterodyne Receiver, Tracking, Tuning, Sensitivity, Gain, Image Rejection, AGC, Adjacent channel selectivity	4,6	BB,PPT
Week 13	FM receiver, Recent Trends and Development in Analog Communication:		BB,PPT
Week 14	ApplicationsofAM,FMandPM,FMBroadcastRadio,FrequencyStabilizers	5,6	BB,PPT
Week 15	Revision		BB,PPT

Name of Institute: ITE Name of Faculty: Asst. Prof. Miloni Ganatra

Course code: EC0519 Course name: Sensors & Transducers

Pre-requisites: Basic Electrical & Electronics Engineering, Physics, Analog Electronics Credit points: 4 Offered Semester: 5th

Course Coordinator (weeks 01 - 12)

Full Name: Asst. Prof. Miloni Ganatra Department with siting location: E.C -Machine Lab, 2nd Floor, Bhanwar Building Telephone:9974592124 Email: miloniganatra.ec@indusuni.ac.in Consultation times: 2nd & 4th Saturday.

Course Lecturer (weeks 01 - 12)

Full Name: Asst. Prof. Miloni Ganatra Department with siting location: E.C -Machine Lab, 2nd Floor, Bhanwar Building Telephone:9974592124 Email: miloniganatra.ec@indusuni.ac.in Consultation times: 2nd & 4th Saturday.

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1) Familiar with the constructions and working principle of different types of sensors and transducers.
- 2) Aware about the measuring instruments and the methods of measurement and the use of different transducers.

Course Outcomes (CO)

At the end of the course, a student will be able to:

1) Use concepts in common methods for converting a physical parameter into an electrical quantity.

- 2) Classify and explain with examples of transducers, including those for measurement of temperature, strain, motion, position and light.
- 3) Choose proper sensor comparing different standards and guidelines to make sensitive measurements of physical parameters like pressure, flow, acceleration, etc.
- 4) Predict correctly the expected performance of various sensors.
- 5) Locate different type of sensors used in real life applications and paraphrase their importance.
- 6) Set up testing strategies to evaluate performance characteristics of different types of sensors and transducers and develop professional skills in acquiring and applying the knowledge outside the classroom through design of a real-life instrumentation system.

Course Outline

<u>UNIT-I</u>

[10 hours]

Mechanical and Electromechanical sensor: Definition, principle of sensing & transduction, classification. Resistive (potentiometric type): Forms, material, resolution, accuracy, sensitivity.

Strain gauge: Theory, type, materials, design consideration, sensitivity, gauge factor, variation with temperature, adhesive, rosettes.

Inductive sensor: common types ,Reluctance change type, Mutual inductance change type, transformer action type, Magnetostrictive type, brief discussion with respect to material, construction and input output variable, Ferromagnetic plunger type, short analysis.

LVDT: Construction, material, output input relationship, I/O curve, discussion. **Proximity sensor**

<u>UNIT-II</u>

[12 hours]

Capacitive sensors: Variable distance-parallel plate type, variable areaparallel plate, serrated plate/teeth type and cylindrical type, variable dielectric constant type, calculation of sensitivity.

Stretched diaphragm type: microphone, response characteristics.

Piezoelectric element: piezoelectric effect, charge and voltage co-efficient, crystal model, materials, natural & synthetic type, their comparison, force & stress sensing, ultrasonic sensors.

<u>UNIT-III</u>

[13 hours]

Thermal sensors:

Material expansion type: solid, liquid, gas & vapor

Resistance change type: RTD materials, tip sensitive & stem sensitive type, Thermister material, shape, ranges and accuracy specification.

Thermo emf sensor: types, thermoelectric power, general consideration, Junction semiconductor type IC and PTAT type.

Radiation sensors: types, characteristics and comparison.

Pyroelectric type.

<u>UNIT-IV</u>

[10 hours]

Magnetic sensors: Sensor based on Villari effect for assessment of force, torque, proximity, Wiedemann effect for yoke coil sensors, Thomson effect, Hall effect, and Hall drive, performance characteristics.

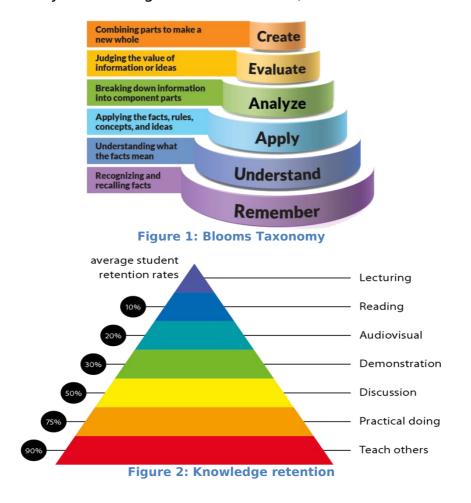
Radiation sensors: LDR, Photovoltaic cells, photodiodes, photo emissive cell types, materials, construction, response.

Geiger counters, Scintillation detectors, Introduction to smart sensors

Method of delivery

(Face to face lectures, Online Platform, Active Learning Techniques, PPT, Chalk Board)

Study time


(9 hours per week including class attendance)

CO-PO Mapping (PO: Program Outcomes)

	PO 1	PO 2	PO 3	РО 4	РО 5	PO 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO 1	3	3	2	1	2	2	-	-	3	-	-	-
CO 2	2	1	3	3	2	1	2	-	-	-	-	-
CO 3	2	1	2	2	3	2	2	-	-	-	-	-
CO 4	2	2	3	2	1	-	-	-	-	-	-	-
CO 5	2	3	2	1	2	2	-	-	-	-	-	-
CO 6	2	3	3	2	1	1	2	-	-	-	-	-

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work:

Lab Experiments & Outcome of Sensor & Transducer Lab:

Outcome:

At the end of the course, student will be able to:

- 1) Know the various types of error in instruments.
- 2) Obtain the knowledge about various types of Sensors & Transducers and their working principle.
- 3) Understand the various types of transducers like Resistive, Capacitive and Inductive.
- 4) Learn some of the miscellaneous transducers.

Lab Experiments:

Sr. No.	Lab Experiments
1	Characteristics of Strain gauge
2	Characteristics of load cell
3	Characteristics of RTD
4	Characteristics of Thermocouple
5	Characteristics of LVDT
6	Characteristics of Piezo-electric transducer
7	Characteristics of Proximity Sensor
8	Characteristics of Ultrasonic Sensor
9	Characteristics of Smart Sensor

Lecture/tutorial times

(Give lecture times in the format below)

Example:

LectureTuesday8.30 - 10.30 amRoom LH 30Lecture/TutorialWednesday8.30 - 10.30 amRoom LH 30PracticalsFriday

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books:

1. Sensor & transducers, D. Patranabis, 2nd edition, PHI

Reference Books:

- 1. Instrument transducers, H.K.P. Neubert, Oxford University press.
- 2. Measurement systems: application & design, E.A.Doebelin, Mc Graw Hill

Additional Materials (Web Resources)

1. <u>https://nptel.ac.in/courses/108/108/108108147/</u>

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

CIE 60 marks: (40 marks mid semester examination + 20 marks internal evaluation)

Internal Evaluation (20 Marks): 05 marks: attendance 10 marks: Seminar Presentation 05 marks: Assignment

Final exam (closed book) 40 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

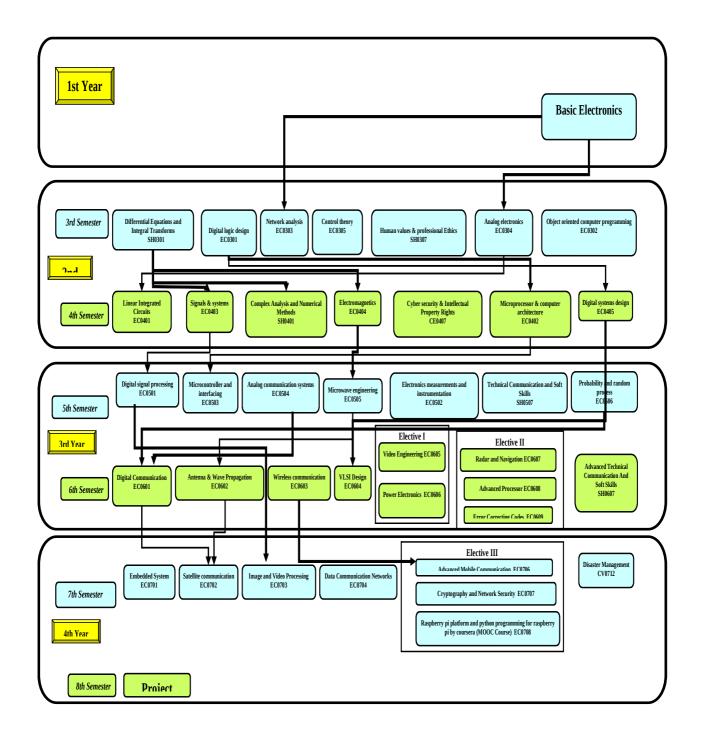
Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	MechanicalandElectromechanicalsensor:Definition, principle of sensing& transduction, classification.Resistive (potentiometric type):Forms, material, resolution,accuracy, sensitivity.Strain gauge:Theory, type,materials, design consideration	CO1, CO2, CO5	BB,PPT
Weeks 2	Sensitivity, gauge factor, variation with temperature, adhesive, rosettes Inductive sensor: common types- Reluctance change type, Mutual inductance change type.		BB,PPT
Week 3		CO1, CO2, CO5	BB,PPT
Week 4	LVDT: Construction, material, output input relationship, I/O curve, discussion. Proximity sensor		BB,PPT Assignment Submission
Week 5	Capacitive sensors: Variable distance-parallel plate type, variable area- parallel plate. serrated plate/teeth type, cylindrical type, variable dielectric constant type, calculation of sensitivity.	CO1, CO2, CO3	BB,PPT


			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 6	Stretched diaphragm type: microphone, response characteristics , Piezoelectric element: piezoelectric effect, charge and voltage co- efficient , Crystal model, materials, natural & synthetic type, their comparison, Force & stress sensing, ultrasonic sensors.		BB,PPT Mid Sem Examination
Week 7	Thermal sensors: Material expansion type: solid, liquid, gas & vapor, Resistance change type: RTD materials, tip sensitive & stem sensitive type	CO1, CO2, CO3, CO4	BB,PPT
Week 8	specification , Thermo emf sensor: types, thermoelectric power, general consideration,	CO3, CO4	BB,PPT
Week 9	Junction semiconductor type IC and PTAT type, Radiation sensors: types, characteristics and comparison. Pyroelectric type.	CO3, CO4	BB,PPT
Week 10	Magnetic sensors:Sensor based on Villari effectfor assessment of force,torque, proximity,Wiedemanneffect for yoke coil sensors,Thomson effect, Hall effect,and Hall drive, performancecharacteristics.Geiger counters, Scintillationdetectors, Introduction tosmart sensors	CO1, CO2, CO3, CO6	BB,PPT Seminar Presentation
Week 11	Radiation sensors: LDR, Photovoltaic cells, photodiodes, photo emissive cell types, materials, construction, response.		BB,PPT Seminar Presentation
Week 12	Geiger counters, Scintillation detectors, Introduction to smart sensors	CO1, CO2, CO3, CO6	BB,PPT Seminar Presentation

🔵 📕 ज्ञानेन प्रकाशते जगत्

PROGRAM MAP:

Name of Institute: Institute of Technology & Engineering Name of Faculty: Prof.Zalak Patel

Course code: EC0522 Course name: Digital Signal Processing Pre-requisites: Signals & Systems

Credit points: 5 Offered Semester: 5th

Course coordinator (weeks 01 - 14)

Full name: Prof. Zalak Patel Department with siting location: Electronics & Communication Engineering Telephone: 7878452549

Email: <u>zalakpatel.ec@indusuni.ac.in</u> Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Prof. Zalak Patel Department with siting location: Electronics & Communication Engineering Telephone: 7878452549 Email: <u>zalakpatel.ec@indusuni.ac.in</u> Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1. To study about discrete time systems and to learn about FFT algorithm
- 2. To study the design techniques for FIR and IIR digital filters
- 3. To study the finite word length effects in signal processing
- 4. To understand the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation

Course Outcomes (CO)

1. To apply DFT for the analysis of digital signals & systems

- 2. Design FIR and IIR filters by hand to meet specific magnitude and phase requirements.
- 3. Design and implement digital filters by hand and by using Matlab.
- 4. Use computers and MATLAB to create, analyze and process signals, and to simulate and analyze systems sound and image synthesis and analysis, to plot and interpret magnitude and phase of LTI system frequency responses.
- 5. To choose digital signal processing algorithms to implement communication systems. apply DSP programming tools and use them for applications

	co()		
CUUI	SE U		
Cour	se u	uu	пе

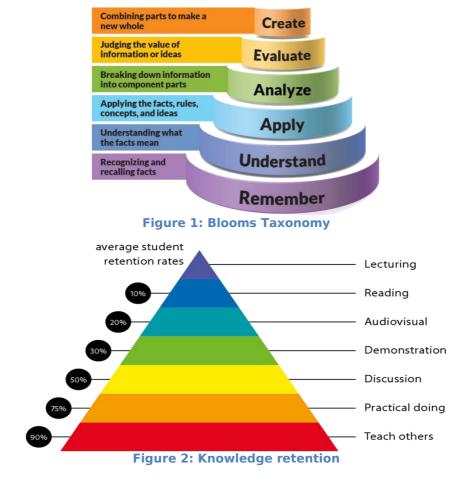
Unit	Topics
No.	
1	DFT & FFT Introduction of DFT
	Matrix relation for computing DFT and IDFT
	DFT Properties
	Relation between DFT and other transform
	Comparison between linear and circular convolution Application of
	DFT
	Introduction to FFT
	Radix 2 FFT algorithm (DIT)
	Radix 2 FFT algorithm(DIF)
	IFFT
	Linear filtering approach to computation of DFT
	Quantization error
2	IIR Filter design
	Introduction of Structure for IIR system
	Direct form
	Cascade form
	Parallel Lattice Structure
	Introduction to digital filter
	llR filter design
	Impulse invariant
	Bilinear
	Matched Z transformation
	Design Butterworth filter
	Design chebyshev filter
	Designing Highpass, bandpass and bans stop filter
3	FIR filter design
5	Structure of FIR systems
	Direct form , Cascaded form
	Lattice structure, Transposed structure
	Introduction of FIR filter
	FIR filter design & specification
	FIR filter design using windows
	FIR filter design using DFT method
	FIR filter design using sampling method Quantization error
	DSP Processor
4	Introduction of DSP processor
	Von Neumann model
	Hardward Architecture
	Texas Instrument's TMS320 family
	Comparison of Microprocessor with DSP processor

	Application of DSP
Text books:	 V. Udayashankara," modern digital signal processing", third edition PHI Learning, 2016. ISBN 9788120345676 John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth edition, Pearson education / Prentice Hall, 2007, ISBN 13: 9780131873742
Reference Books/Note s	 Alan V.Oppenheim, Ronald W. Schafer & Hohn. R.Back, "Discrete Time Signal Processing", Pearson Education, 2nd edition, 2005, ISBN 13: 9780131988422 Sanjit K. Mitra, "Digital Signal Processing -A Computer Based Approach", Third Edition, Tata Mc Graw Hill, 2007, ISBN 13: 9780077366766

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time


3 hours per week Lectures, 2 hours tutorial and 2 Hours practical per week

CO-PO Mapping (PO: Program Outcomes)

	РО 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2
CO 1	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO 2	\checkmark	\checkmark	\checkmark		\checkmark							
CO 3	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO 4	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark		\checkmark	
CO 5	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed	1 Professional knowledge,
Have a sound knowledge of an area	grounding & awareness
of study or profession and	
understand its current issues, locally	
and internationally. Know how to	
apply this knowledge. Understand	
how an area of study has developed	
and how it relates to other areas.	

Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work:

Experime nt. No.	Title	Learning Outcomes
1	Introduction of MATLAB Write a MATLAB program to Generate 1. Unit Step Sequence 2. Exponential Sequence 3. Sinusoidal sequence etc	Use computers and MATLAB to create, analyse and process signals, and to simulate and analyse.
2	Write a MATLAB program to perform different operation on sequences	Understand the basic operations of Signal processing
3	Write a MATLAB program for Signal Smoothing by a moving-	Able to remove noise using Moving averaging filter

	average Filter	
4	Write a MATLAB program to generate Linear convolution any two sequences.	Develop Linear convolution Algorithms using MATLAB Software package
5	Write a MATLAB program to generate Circular convolution of any two sequences.	Develop Circular convolution Algorithms using MATLAB Software package
6	Write a MATLAB program to generate Linear & circular convolution using DFT & IDFT.	Develop Linear & circular Convolution using DFT & IDFT by MATLAB signal processing
7	Design and implement IIR (LPF/HPF)filters in MATLAB.	
8	Design a IIR Butterworth filter & IIR Chebyshev filter using MATLAB.	Analyze and Observe Magnitude and phase characteristics (Frequency response Characteristics) of digital IIR- Butterworth, Chebyshev filters
9	Write a MATLAB program to verify FIR filters using different Window Techniques.	Analyze and Observe Magnitude and phase characteristics (Frequency response Characteristics) of digital FIR filters using window techniques
10	Parallel Form Realizations of an IIR Transfer Function in MATLAB	Able to generate parallel form coefficient using MATLAB

Lecture/tutorial times

(Give lecture times in the format below)

Online class Time Table

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

- 1. <u>https://nptel.ac.in/courses/117102060/</u>
- 2. <u>https://in.mathworks.com/solutions/dsp.html</u>

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks
- 2. Practical CIE 60 marks:
- a. Experiment Performance 30 Marks
- b. File work + Skill Test 20 Marks
- c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

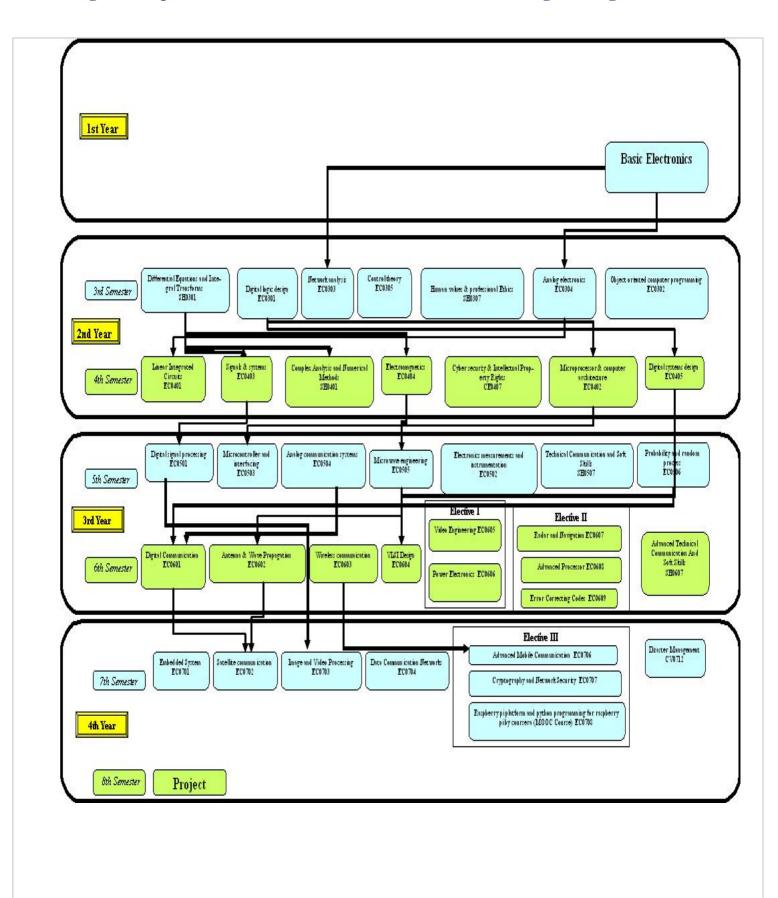
University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.


Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	DFT & FFT Introduction of DFT Matrix relation for computing DFT and IDFT DFT Properties	CO1 CO3	Chalk and talk PowerPoint Presentations
Weeks 2	Relation between DFT and other transform Comparison between linear and circular convolution Application of DFT	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 3	Introduction to FFT Radix 2 FFT algorithm (DIT) Radix 2 FFT algorithm(DIF)	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 4	IFFT Linear filtering approach to computation of DFT Quantization error	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 5	IIR Filter design Introduction of Structure for IIR system Direct form Cascade form Parallel Lattice Structure	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 6	Introduction to digital filter IIR filter design Impulse invariant Bilinear Matched Z	CO2 CO3	Chalk and talk PowerPoint Presentations

		Ŭ	ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
	transformation		
Week 7	Design Butterworth filter Design chebyshev filter Designing Highpass, bandpass and bans stop filter	CO2 CO3 CO5	Chalk and talk PowerPoint Presentations
Week 8	FIR filter design Structure of FIR systems Direct form , Cascaded form Lattice structure, Transposed structure	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 9	Introduction of FIR filter FIR filter design & specification FIR filter design using windows	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 10	FIR filter design using DFT method FIR filter design using sampling method Quantization error	CO2 CO5	Chalk and talk PowerPoint Presentations
Week 11	DSP Processor Introduction of DSP processor Von Neumann model	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 12	Hardward Architecture Texas Instrument's TMS320 family Comparison of Microprocessor with DSP processor	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 13	Application of DSP	C05	Chalk and talk PowerPoint Presentations
Week 14	Revision		

Program map for B.Tech (Electronics & Communication Engineering)

Name of Institute: Indus Institute of Technology & Engineering Name of Faculty: Prof. Zalak Patel

Course code: EC0505 Course name: Electromagnetics

Pre-requisites: Engineering Physics, Applied Mathematics Credit points: 04 Offered Semester: 5th

Course Coordinator (weeks 15)

Full Name: Prof. Zalak Patel Department with sitting location: EC (Antenna & Microwave Lab), Bhanwar Building Telephone: 3203 Email: zalakpatel.ec@indusuni.ac.in Consultation times: 3:30 to 4:15 PM

Course Lecturer (weeks 15)

Full Name: Prof. Zalak Patel Department with sitting location: EC (Antenna & Microwave Lab), Bhanwar Building Telephone: 3203 Email: zalakpatel.ec@indusuni.ac.in Consultation times: 3:30 to 4:15 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. To determine electric and magnetic fields for given problems.
- 2. To relate the physical basis of Maxwell's equations in integral form and differential form, and apply them for the solution of appropriate problems involving static as well as time varying fields.
- 3. To acquire basic knowledge of Uniform plane waves.

Course Outcomes (CO)

After completion of this course, expected outcome from the students,

1. Solve the problems on dot product, cross product and co-ordinate systems & conversion.

- 2. Apply vector calculus to understand the behaviour of static electric fields in standard configurations.
- 3. Apply vector calculus to understand the behaviour of static magnetic fields in standard configurations.
- 4. Describe and analyse electromagnetic wave propagation in free-space based on Maxwell's equation.
- 5. Analyse the uniform plane wave motion in good conductors, perfect dielectric and inside lossy material.

Course Outline

(Key in topics to be dealt)

<u>UNIT-I</u>

Vector Analysis

Scalars & Vectors, Dot and Cross products, Co-ordinate systems and conversions.

Electrostatics I

Coulomb's law, Electric field intensity, Concept of electric flux density, Gauss's law and its applications, Differential volume element, Divergence, Maxwell's first eqn. and divergence theorem.

<u>UNIT-II</u>

Electrostatics II

Conductor properties & boundary conditions, boundary condition for perfect dielectric materials, Poisson's and Laplace equation, Uniqueness theorem, Examples.

<u>UNIT-III</u>

Steady magnetic field

Biot-Savart's law, Ampere's circuital law, Point form of Ampere's circuital law, concept of flux density, Scalar and vector magnetic potential, Stoke's theorem for magnetic field

Time Varying Fields and Maxwell's Equations

Faraday's law, Displacement current, Maxwell's equations in point and integral forms for time varying fields

<u>UNIT-IV</u>

The Uniform Plane Wave

The wave equation, wave motion in free space, waves motion in perfect dielectric, Plane waves inside the lossy matter, Poynting vector and Wave power, Propagation in good conductor, Phenomena of skin effect, Reflection of uniform plane waves.

[11 hours]

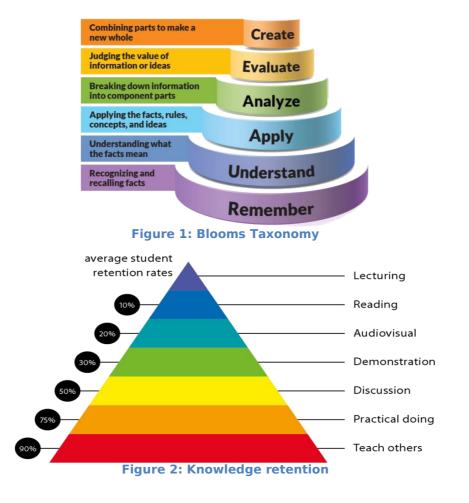
[12 hours]

[7 hours]

[12 hours]

Method of delivery

PO						Р	0					
C0	1	2	3	4	5	6	7	8	9	10	11	12
1	\checkmark					\checkmark	\checkmark	\checkmark				
2												
3										\checkmark		
4										\checkmark		
5		\checkmark										


(Face to face lectures, self study material, Active Learning Techniques)

Study time

(5 hours per week including class attendance)

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention(For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

Conorol Craduate Qualities	Specific Department of
General Graduate Qualities	Specific Department of Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas. Independent learners Engage with new ideas and ways of	1 Professional knowledge, grounding & awareness 2 Information literacy, gathering & processing
thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Lecture/tutorial times

Lecture	Monday	11:10 TO 12:00 PM	
Lecture	Tuesday	2:00 to 3:00 PM	
Lecture	Friday	10:00 to 11:00 PM	

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

1. Engineering Electromagnetics, W H Hayt, J A buck, 7th Edition, TMH Publication.

Additional Materials

Reference Books

- 1. Electromagnetic Waves & Radiating Systems, Edward C. Jordan, Keith G. Balmain, 2nd Edition, PHI publication.
- 2. Fields and Waves in Communication Electronics, Simon Ramo, John R. Whinnery, Wiley Publication

Web Resources

- 1. http://nptel.ac.in/courses/115101005/
- 2. http://nptel.ac.in/courses/108104087/
- 3. http://nptel.ac.in/courses/117103065/
- 4. ece3300+smith chart

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Attendance	5%
Seminar/Tutorial	10 %
Assignment	5 %
Mid semester	40%
Final exam (closed book)	40%

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (Antenna & Wave Propagation) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Scalars & Vectors, Dot and Cross products, Co-ordinate systems and conversions	C01	Assignment
Weeks 2	Coulomb's law, Electric field intensity, Concept of electric flux density		Tutorial
Week 3	Gauss's law and its applications, Differential volume element, Divergence, Maxwell's first eqn. and divergence theorem.	CO2	Tutorial
Week 4	Conductor properties & boundary conditions, boundary condition for perfect dielectric materials	CO2	Tutorial
Week 5	Poisson's and Laplace equation, Uniqueness theorem, Examples	CO1, CO2	Tutorial
Week 6	Biot-Savart's law, Ampere's circuital law, Point form of Ampere's circuital law	CO3	Assignment
Week 7	Concept of flux density, Scalar and vector magnetic potential, Stoke's theorem for magnetic field	CO3	Tutorial
Week 8	Time Varying Fields and Faraday's law, Displacement current	CO4	Tutorial
Week 9	Maxwell's equations in point and integral forms for time varying fields	CO4	Midsem Exam
Week 10	The wave equation, wave motion in free space	CO5	Seminar

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 11	waves motion in perfect dielectric, Plane waves inside the lossy matter, Poynting vector and Wave power	CO5	Seminar
Week 12	Propagation in good conductor, Phenomena of skin effect, Reflection of uniform plane waves.	CO5	Seminar

PROGRAM MAP FOR B.Tech. (ELECTRONICS & COMMUNICATION ENGINEERING)

It Year Basic Electronics
Bélementőperesesetőlere getelsesete 302541 Bereikesése Ettál Cennikán Ettál Demessés Aprilanevilláris 20241 Demessés Aprilanevilllár
Statistics Statist
Cheld of 3 years 2000 Contraction of 2000 Produce Desc Contraction of 2000 Produce
St Smatter Project

Name of Institute: Institute of Technology & Engineering Name of Faculty: Dr. Vrushank Shah

Course code: EC0524 Course name:Python Programming

Pre-requisites: C Programming Credit points: 5 Offered Semester: 5th

Course coordinator (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721

Email: vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721 Email:vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM - 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

1. Importance of Python as a scientific computing tool which directly leads to employability.

- 2. To learn how to design and develop Python applications.
- 3. Skill development to apply mutable and immutable types.
- 4. To learn how to design object oriented concepts in python.
- 5. Development of GUI based applications for entrepreneurship.

Course Outcomes (CO)

- 1. Work with the Python standard libraries.
- 2. Implement mutability for various elements of Python.
- 3. Develop GUI based projects.

- 4. Design Networking configuration for chatting applications.
- 5. Implement Scientific Computing.
- 6. Solve real world problems using Python programming

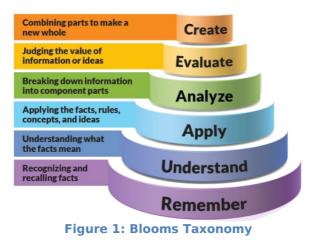
	Topic	S			
No.					
1	and inst condition	nal introduction to programming, algorithms and data structures via gcd, Downloading talling Python, gcd in Python: variables, operations, control flow - assignments, on-als, loops, and functions. Python: types, expressions, strings, lists, tuples. Python y model: names, mutable and immutable values List operations: slices etc Binary search ,			
	I nduc	tive function definitions: numerical and structural induction, Elementary inductive			
	sorting	selection and insertion sort, I n-place sorting.			
	Basic a	lgorithmic analysis: input size, asymptotic, complexity () notation, Arrays vs lists, Merge			
2	sort ,Quicksort, Stable sorting. Dictionaries More on Python functions: optional arguments, default values, Passing functions as arguments, Higher order functions on lists: map, list comprehension. Exception handling ,Basic input/output ,Handling files , String processing				
3	Backtracking: N Queens, recording all solutions, Scope in Python: local, global, nonlocal				
	names, N ested functions, Data structures: stack, queue, Heaps. Abstract data types, Classes and objects in Python ,"Linked" lists: find, insert, delete , Binary search trees: find, insert, delete , Height-balanced binary search trees. Array computing and curve plotting, vectors and higher-dimensional arrays, matrices, numPy, sciPy and Matplotlib, Plotting using PyLab, Chat				
	objects Height-	in Python ,"Linked" lists: find, insert, delete, Binary search trees: find, insert, delete, balanced binary search trees. Array computing and curve plotting, vectors and higher-			
	objects Height- dimens	in Python ,"Linked" lists: find, insert, delete , Binary search trees: find, insert, delete , balanced binary search trees. Array computing and curve plotting, vectors and higher-			
4	objects Height- dimens Applica Python	in Python ,"Linked" lists: find, insert, delete , Binary search trees: find, insert, delete , balanced binary search trees. Array computing and curve plotting, vectors and higher- ional arrays, matrices, numPy, sciPy and Matplotlib, Plotting using PyLab, Chat			
Text	objects Height- dimens Applica Python Pandas	 in Python ,"Linked" lists: find, insert, delete , Binary search trees: find, insert, delete , balanced binary search trees. Array computing and curve plotting, vectors and higher-ional arrays, matrices, numPy, sciPy and Matplotlib, Plotting using PyLab, Chat ation, Graphics and GUI Programming – Drawing using Turtle, Tkinter. Pandas - Data alignment, aggregation, summarization, computation and analysis with Scientific computation using Python - Statistical data analysis, image processing 1. John V Guttag. "I ntroduction to Computation and Programming Using Python", 			
Text books Refer	objects Height- dimens Applica Python Pandas	 in Python ,"Linked" lists: find, insert, delete , Binary search trees: find, insert, delete , balanced binary search trees. Array computing and curve plotting, vectors and higher-ional arrays, matrices, numPy, sciPy and Matplotlib, Plotting using PyLab, Chat ation, Graphics and GUI Programming – Drawing using Turtle, Tkinter. Pandas - Data alignment, aggregation, summarization, computation and analysis with Scientific computation using Python - Statistical data analysis, image processing 1. John V Guttag. "I ntroduction to Computation and Programming Using Python", Prentice Hall of I ndia 2. Hans Petter Langtangen, A Primer on Scientific Programming 			

Algorithms in Python", Wiley 5. Kenneth A. Lambert, "Fundamentals of Python – First
Programs", CEN GAGE Publication

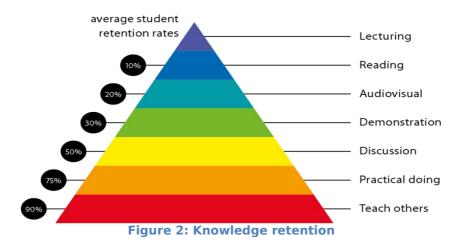
Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time


3 hours per week Lectures and 2 Hours practical per week

	P 0 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2
CO1	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO2	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO3	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO4	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO5	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	
CO6	\checkmark	\checkmark	\checkmark		\checkmark							


CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas. Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	1 Professional knowledge, grounding & awareness 2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards. Effective communicators	4 Problem solving skills 5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage	7 Teamwork

with people in different settings. Recognize how culture can shape communication.	
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work : Not Applicable

Lecture/tutorial times

(Give lecture times in the format below)

Monday-9.00 to 10.00 AM Wednesday: 12.20 to 1.20 PM Thursday: 11:10 to 12:10 PM Friday: 9:00 to 11:00

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

1. https://www.edx.org/course/introduction-to-computer-science-and-programming-using-pyt hon-2

2. http://www.openculture.com/2017/05/learn-python-with-a-free-online-course-from-mit.ht ml 3.https://www.edx.org/course/introduction-to-python-absolute-beginner-3

4. https://onlinecourses.nptel.ac.in/noc19_cs40

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks
- 2. Practical CIE 60 marks:
- a. Experiment Performance 30 Marks
- b. File work + Skill Test 20 Marks
- c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

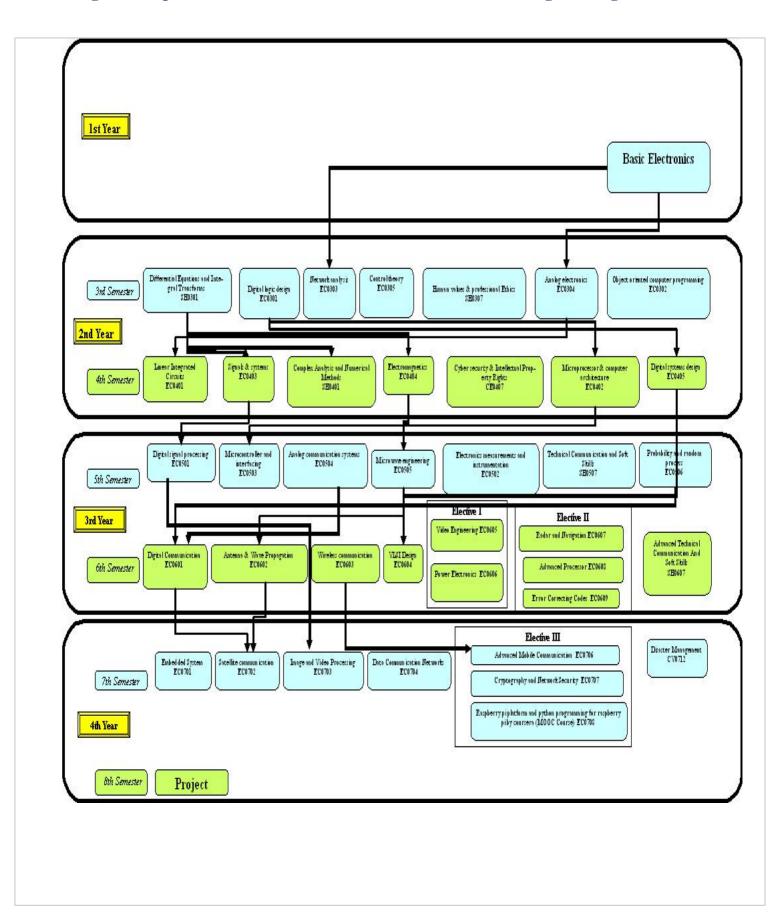
University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.


Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
	Weeks 1	I nformal introduction to programming, algorithms and data structures via gcd, Downloading and installing Python, gcd in Python: variables, operations, control flow - assignments, condition-als, loops, and functions	CO1 CO3	Chalk and talk PowerPoint Presentations
	Weeks 2	Python: types, expressions, strings, lists, tuples. Python memory model: names, mutable and immutable values List operations: slices etc Binary search	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 3	I nductive function definitions: numerical and structural induction ,Elementary inductive sorting: selection and insertion sort, I n-place sorting.	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 4	Basic algorithmic analysis: input size, asymptotic, complexity () notation ,Arrays vs lists ,Merge sort ,Quicksort, Stable sorting. Dictionaries More on Python functions: optional arguments, default values, Passing functions as arguments	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 5	Higher order functions on lists: map, list comprehension. Exception handling ,Basic input/output ,Handling files , String processing	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 6	Backtracking: N Queens, recording all solutions, Scope in Python: local, global, nonlocal names, N ested functions, Data structures: stack, queue, Heaps.	CO2 CO3	Chalk and talk PowerPoint Presentations

			- I	ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
	Week 7	Abstract data types, Classes and objects in Python ,"Linked" lists: find, insert, delete ,	CO2 CO3 CO5	Chalk and talk PowerPoint Presentations
	Week 8	Binary search trees: find, insert, delete, Height-balanced binary search trees	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 9	Array computing and curve plotting, vectors and higher-dimensional arrays, matrices,	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 10	numPy, sciPy and Matplotlib, Plotting using PyLab, Chat Application,	CO2 CO5	Chalk and talk PowerPoint Presentations
	Week 11	Graphics and GUI Programming – Drawing using Turtle, Tkinter.	CO4 CO5	Chalk and talk PowerPoint Presentations
	Week 12	Python Pandas - Data alignment, aggregation, summarization, computation and analysis with Pandas.	CO4 CO5	Chalk and talk PowerPoint Presentations
	Week 13	Scientific computation using Python - Statistical data analysis, image processing	C05	Chalk and talk PowerPoint Presentations
	Week 14	Revision		

Program map for B.Tech (Electronics & Communication Engineering)

Name of Institute: Institute of Technology & Engineering Name of Faculty: Dr. Vrushank Shah

Course code: EC0524 Course name: Digital Signal Processing

Pre-requisites: Signals & Systems Credit points: 5 Offered Semester: 5th

Course coordinator (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721

Email: vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721 Email:vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM - 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1. To study about discrete time systems and to learn about FFT algorithm
- 2. To study the design techniques for FIR and IIR digital filters
- 3. To study the finite word length effects in signal processing
- 4. To understand the architecture of a digital signal processor and some programming issues in fixed-point digital signal processor in real-time implementation

Course Outcomes (CO)

- 1. To apply DFT for the analysis of digital signals & systems
- 2. Design FIR and IIR filters by hand to meet specific magnitude and phase requirements.

- 3. Design and implement digital filters by hand and by using Matlab.
- 4. Use computers and MATLAB to create, analyze and process signals, and to simulate and analyze systems sound and image synthesis and analysis, to plot and interpret magnitude and phase of LTI system frequency responses.
- 5. To choose digital signal processing algorithms to implement communication systems. apply DSP programming tools and use them for applications

Cou	rse Outline
Unit No.	Topics
1	INTRODUCTION: Signals, systems and signal processing, concept of frequency in continuous and discrete time signals, Periodic Sampling & Frequency domain representation of sampling, Reconstructions of band limited signals from its samples, general applications of DSP Discrete-Time
	Signals and systems: Discrete-Time Signals, Discrete-Time Systems, LTI Systems, Properties of LTI Systems, Linear Constant Co-efficient Difference equations, linear convolution and its properties, Frequency domain representation of Discrete-Time Signals & Systems. Representation of sequences by discrete time Fourier Transform, (DTFT), Properties of discrete time Fourier Transform, and correlation of signals, Fourier Transform Theorems.
2	THE Z-TRANSFORM AND ITS APPLICATION TO THE ANALYSIS OF LTI
2	SYSTEMS Properties of ROC for Z-transform, Inverse Z-transform, Frequency response of LTI system, System functions for systems with linear constant-coefficient Difference equations, Freq. response of rational system functions relationship between magnitude & phase, All pass systems, inverse systems, Minimum/Maximum phase systems, systems with linear phase
	Structures of Discrete-Time Systems: Block Diagram representation of Linear Constant-Coefficient Difference equations, Structures of IIR Systems, Basic Structures for FIR Systems
3	DISCRETE- FOURIER TRANSFORM (DFT) Discrete Fourier Transform (DFT): Relationship between the DTFT and DFT and their inverses, DFT properties, Linear and circular convolution, Linear filtering methods based on DFT.
	FAST FOURIER TRANSFORM[F.F.T] Direct computation of DFT, DIT & DIF - FFT using radix 2 – Butterfly structure. Decimation in Time[D.I.T], Decimation in frequency[D.I.F], Introduction to basic butterfly computation in radix-4 FFT algorithm, Goertzel algorithm and Chirp-Z Transform algorithm, Effect of Quantisation in DFT
4	IIR FILTER DESIGN Analog filter design – Butterworth and Chebyshev approximations; Discrete time IIR filter from analog filter, IIR filter design by impulse invariance, bilinear transformation, Approximation of derivatives- (HPF,BPF,BRF) filter design using frequency translation, Warping, prewarping - Frequency transformation.
	FIR FILTER DESIGN Linear phase FIR filter, Filter design using windowing techniques, Frequency sampling techniques, Finite word length effects in digital Filters

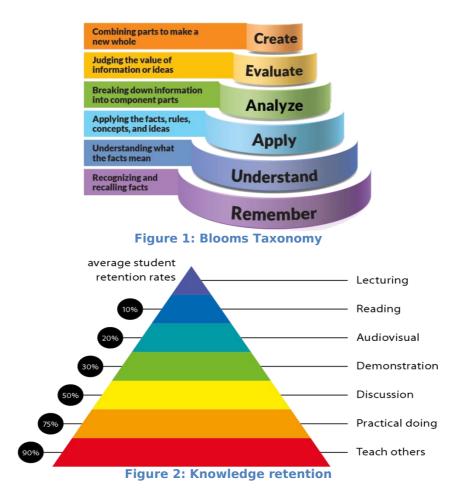
Multip	Architecture of DSP Processors: Harward architecture, pipelining, Multiplier-accumulator (MAC) hardware, Architectures of fixed and floating point (TMSC6000) DSP processors.				
Text books:	John G. Proakis & Dimitris G.Manolakis, "Digital Signal Processing – Principles, Algorithms & Applications", Fourth edition, Pearson				
Reference Books/Note s	 education / Prentice Hall, 2007 1. Alan V.Oppenheim, Ronald W. Schafer & Hohn. R.Back, "Discrete Time Signal Processing", Pearson Education, 2nd edition, 2005, ISBN 13: 9780131988422 2. Sanjit K. Mitra, "Digital Signal Processing -A Computer Based Approach", Third Edition, Tata Mc Graw Hill, 2007, ISBN 13: 9780077366766 				

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time

Γ


3 hours per week Lectures, 2 hours tutorial and 2 Hours practical per week

	P 0 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO1	\checkmark	\checkmark	\checkmark		\checkmark							
CO2	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO3	\checkmark		\checkmark		\checkmark							
CO4	\checkmark		\checkmark		\checkmark							
CO5	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of	2 Information literacy, gathering & processing

sources and technologies. Acknowledge the work and ideas of others.	
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings.	5 Written communication 6 Oral communication 7 Teamwork
Recognize how culture can shape communication. Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work : Not Applicable

Lecture/tutorial times

(Give lecture times in the format below)

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

- 1. https://nptel.ac.in/courses/117102060/
- 2. <u>https://in.mathworks.com/solutions/dsp.html</u>

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks
- 2. Practical CIE 60 marks:
- a. Experiment Performance 30 Marks
- b. File work + Skill Test 20 Marks
- c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

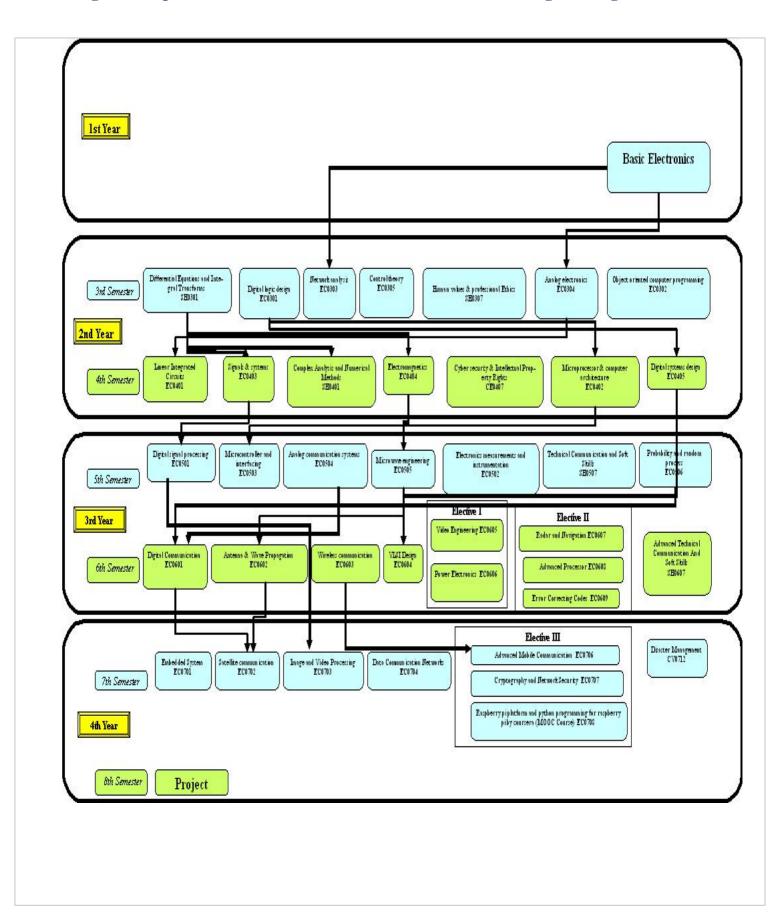
Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)


	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
	Weeks 1	Signals, systems and signal processing, concept of frequency in continuous and discrete time signals	CO1 CO3	Chalk and talk PowerPoint Presentations
	Weeks 2	Periodic Sampling & Frequency domain representation of sampling, Reconstructions of band limited signals from its samples, general applications of DSP	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 3	Discrete-Time Signals, Discrete-Time Systems, LTI Systems, Properties of LTI Systems, Linear Constant Co- efficient Difference equations	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 4	linear convolution and its properties, Frequency domain representation of Discrete-Time Signals & Systems.	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 5	Representation of sequences by discrete time Fourier Transform, (DTFT), Properties of discrete time Fourier Transform, and correlation of signals, Fourier Transform Theorems.	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 6	Properties of ROC for Z-transform, I nverse Z-transform, Frequency response of LTI system, System functions for systems with linear constant-coefficient Difference equations	CO2 CO3	Chalk and talk PowerPoint Presentations

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 7	Freq. response of rational system functions relationship between magnitude & phase, All pass systems, inverse systems, Minimum/Maximum phase systems, systems with linear phase	CO2 CO3 CO5	Chalk and talk PowerPoint Presentations
Week 8	Block Diagram representation of Linear Constant-Coefficient Difference equations, Structures of I I R Systems, Basic Structures for FI R Systems	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 9	Discrete Fourier Transform (DFT), Relationship between the DTFT and DFT and their inverses, DFT properties, Linear and circular convolution, Linear filtering methods based on DFT.	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 10	Direct computation of DFT, DI T & DI F - FFT using radix 2 – Butterfly structure. Decimation in Time[D.I .T], Decimation in frequency [D.I .F], I ntroduction to basic butterfly computation in radix-4 FFT algorithm, Goertzel algorithm and Chirp-Z Transform algorithm, Effect of Quantisation in DFT	CO2 CO5	Chalk and talk PowerPoint Presentations
Week 11	Analog filter design – Butterworth and Chebyshev approximations; Discrete time I I R filter from analog filter, I I R filter design by impulse invariance, bilinear transformation, Approximation of derivatives- (HPF,BPF,BRF) filter design using frequency translation, Warping, prewarping - Frequency transformation.	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 12	Linear phase FI R filter, Filter design using windowing techniques, Frequency sampling techniques, Finite word length effects in digital Filters	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 13	Harward architecture, pipelining, Multiplier-accumulator (MAC) hardware, Architectures of fixed and floating point (TMSC6000) DSP processors.	C05	Chalk and talk PowerPoint Presentations

 	ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY		
Week 14	Revision		

Program map for B.Tech (Electronics & Communication Engineering)

