

Name of Institute: Institute of Technology & Engineering Name of Faculty: Dr. Vrushank Shah

Course code: EC0729

Course name: Pattern Recognition Techniques

Pre-requisites: Machine Learning Credit points: 3 Offered Semester: 7th

Course coordinator (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721

Email: vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Dr. Vrushank Shah Department with siting location: Electronics & Communication Engineering Telephone: 9898331721

Email: vrushankshah.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

- 1. To equip students with basic mathematical and statistical techniques commonly used in pattern recognition.
- 2. To introduce students to a variety of pattern recognition algorithms.
- 3. Enable students to apply machine learning concepts in real life problems.

Course Outcomes (CO)

After successful completion of this course, student will be able to

1. Understand machine learning concepts and range of problems that can be handled by machine learning.

- 2. Compare and parameterize different learning algorithms.
- 3. Apply the machine learning concepts in real life problems.
- 4. Bring out structural pattern recognition and feature extraction techniques
- 5. Identify, analyze, formulate, and solve engineering problems
- 6. Realize the clustering concepts and algorithms

Course Outline

Unit No.	Topics						
1	I ntroduction to Pattern Recognition: Problems, applications, design cycle, learning and adaptation, examples, Probability Distributions, Parametric Learning - Maximum likelihood and Bayesian Decision Theory- Bayes rule, discriminant functions, loss functions and Bayesian error analysis						
	Linear models: Linear Models for Regression, linear regression, logistic regression Linear Models for Classification						
2	N eural N etwork: perceptron, multi-layer perceptron, backpropagation algorithm, error surfaces, practical techniques for improving backpropagation, additional networks and training methods, Adaboost, Deep Learning						
3	Linear discriminant functions - decision surfaces, two-category, multi-category, minimum squared error procedures, the Ho-Kashyap procedures, linear programming algorithms, Support vector machine						
4	Algorithm independent machine learning – lack of inherent superiority of any classifier, bias and variance, re-sampling for classifier design, combining classifiers Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierarchical clustering						
Text books	Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", 2/E, Wiley - nterscience, 2000.						
Refere Books s	 Christopher M. Bishop :, "Pattern Recognition And Machine Learning (I nformation Science and Statistics)", 1/E, Springer, January 2008 Hastie, R. Tibshirani, J. H. Friedman:, "The Elements of Statistical Learning", 1/E, Springer, Reprint 3/E, 2003 Christopher M. Bishop ; "Pattern Recognition and Machine Learning", Springer, 2006 Shigeo Abe, "Advances in Pattern Recognition", Springer, 2005 						

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time

3 hours per week Lectures

	PO 1	P 0 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2
C01	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO2	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO3	\checkmark				\checkmark				\checkmark			
CO4	\checkmark				\checkmark				\checkmark		\checkmark	
CO5	\checkmark		\checkmark		\checkmark						\checkmark	
CO6												

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage	6 Oral communication 7 Teamwork
with people in different settings. Recognize how culture can shape communication.	
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work : Not Applicable

Lecture/tutorial times

(Give lecture times in the format below)

Tuesday-12.20 to 1.20 PM Thrusday: 9:00 to 10.00 PM Friday: 2:20 to 3:20

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks
- 2. Practical CIE 60 marks:
- a. Experiment Performance 30 Marks
- b. File work + Skill Test 20 Marks
- c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
	Weeks 1	I ntroduction to Pattern Recognition: Problems, applications, design cycle, learning and adaptation, examples,	CO1 CO3	Chalk and talk PowerPoint Presentations
	Weeks 2	Probability Distributions, Parametric Learning - Maximum likelihood	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 3	Bayesian Decision Theory- Bayes rule, discriminant functions, loss functions and Bayesian error analysis	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 4	Linear models: Linear Models for Regression, 1	CO1 CO3	Chalk and talk PowerPoint Presentations
	Week 5	linear regression, logistic regression Linear Models for Classification	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 6	N eural N etwork: perceptron, multi- layer perceptron	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 7	backpropagation algorithm, error surfaces	CO2 CO3 CO5	Chalk and talk PowerPoint Presentations
	Week 8	practical techniques for improving backpropagation	CO2 CO3	Chalk and talk PowerPoint Presentations
	Week 9	additional networks and training methods	CO2 CO3	Chalk and talk PowerPoint Presentations

		Ŭ	ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 10	Adaboost, Deep Learning	CO2 CO5	Chalk and talk PowerPoint Presentations
Week 11	Linear discriminant functions - decision surfaces	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 12	two-category, multi-category, minimum squared error procedures, the Ho- Kashyap procedures linear programming algorithms, Support vector machine	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 13	Algorithm independent machine learning – lack of inherent superiority of any classifier, bias and variance, re- sampling for classifier design, combining classifiers	C05	Chalk and talk PowerPoint Presentations
Week 14	Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierarchical clustering	C05	Chalk and talk PowerPoint Presentations

Program map for B.Tech (Electronics & Communication Engineering)

Name of Institute: Indus Institute of Technology and Engineering (IITE) Name of Faculty: Divyangna Gandhi

Course code: EC0718 Course name: Biomedical Instrumentation and Imaging

Pre-requisites: Knowledge of basic electronics principles, sensor/ transducers, op-amp based circuit, simulation, Matlab software

Credit points: 04 Offered Semester: 7th

Course Coordinator (weeks 15)

Full Name: Divyangna Gandhi Department with sitting location: 2nd Floor, Bhanwar Building, EC Lab 5(Digital and Networking Lab), IITE - IU

Telephone: 3202 Email: <u>Divyangnagandhi.ec@indusuni.ac.in</u> Consultation times: 4:00PM to 4:45PM

Course Lecturer (weeks 15)

Full Name: Divyangna Gandhi Department with sitting location: 2nd Floor, Bhanwar Building, EC Lab 5(Digital and Networking Lab), IITE - IU

Telephone: 3202 Email: <u>Divyangnagandhi.ec@indusuni.ac.in</u> Consultation times: 4:00PM to 4:45PM

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- To introduce student to basic biomedical engineering & Imaging technology
- To introduce different biological signals, their acquisition, measurements and related constraints
- To understand patient monitoring system and preliminary diagnostic tools for patient health condition.
- To understand basic principles and phenomena in the area of medical diagnostic & imaging instrumentation
- Theoretical and practical preparation for enabling students to maintain medical instrumentation

• To understand the recent trends in medical instrumentation

Course Outcomes (CO)

1 Understand medical terminology & origin of Bio potentials relevant to biomedical instrumentation

- 2. Understand measurement, display and analysis of various bio signals
- 3. Understand different medical imaging systems for different diagnoses

4. Know about Endoscopy unit, Laser in medicine and Electrical safety in medical equipment

5. Design project for biomedical application of electronics

6. Design electronic instruments for measurement of vital sign medical parameters and Implement the electric safety of the medical instruments

Course Outline

Basic Electronics Sensor/ transducers Op-amp based circuit

Method of delivery

(Online lectures, self-study material, Active Learning Techniques)

Study time

(3 Hour's theory and 2 Hour's Lab per week)

CO-PO Mapping (PO: Program Outcomes)

ро	РО											
со	1	2	3	4	5	6	7	8	9	10	11	12
1												
2												
3												
4												
5												
6												

Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible	10 Sustainability, societal & environmental
Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	impact

Lecture/tutorial times

Example:			
Lecture	Monday	09.00 -10.00PM	Online
Lecture	Thursday	03.10 - 04.10PM	Online
Lecture	Friday	11:10 - 12.10 AM	Online
Lab	Wednesday	02:00 to 04:10	Online/Industrial visit

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

Text books	R.S. Khandpur, Handbook of Biomedical Instrumentation, Tata McGraw Hill Publication.			
	Leslie Cromwell, Fred J. Weibell, Erich A. Pfeiffer, "Biomedical Instrumentation and Measurement", Prentice Hall India Pvt. Ltd., New Delhi, 2nd Edition, Reprint, 2013.			
Reference Books	L.A Geddes and L.E.Baker, "Principles of Applied Biomedical Instrumentation" Third Edition, John Wiley and sons, Reprint 2008.Carr & Brown, Introduction to biomedical equipment technology, Prentice Hall Publication.			
	Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 3 rd Edition, 2014.			

Additional Materials

- 2. https://nptel.ac.in/courses/117108037/15
- 3. http://www.vlab.co.in/ba-nptel-labs-biotechnology-and-biomedical-engineering
- 4. https://lecturenotes.in/subject/27/biomedical-instrumentation-bi

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:							
Midterm Exam	40%	Objective (1-6)					
Presentation	5%	Objectives (2-5)					
Attendance	5%						
Assignment	10%	Objectives (2-5)					
Final exam (close	ed book) 40%	Objectives (1-6)					

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule

	Week 15	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
	Weeks 1	To aware students with theoretical and practical syllabus, assessment scheme for theory (CIE, End sem exam), practical (CIE, End sem exam) and all the details about subject activities has to be carry out throughout the semester Fundamental of Biomedical Instrumentation, Sources of Biomedical signals	1	BB,PPT
	Weeks 2	General constraints in designing of medical instrumentation systems, Generalized medical instrumentation block diagram	BB,PPT	
	Week 3	Origin of bioelectric signals: ECG, EEG, EMG, Classification of Medical instruments.	1,2,3	BB,PPT
	Week 4	The Transducers & Transduction principles, Active transducers, Passive Transducers, Transducer for Biomedical Applications	1,2,3	BB,PPT
	Week 5	Electrode theory, electrode behavior and circuit model of Electrode, Types of Electrode, Electrode for Biomedical Applications	1,5	BB,PPT
	Week 6	Electrocardiograph(ECG) machine ,ECG block diagram ,Bipolar and unipolar leads ,Phonocardiograph	1,5	BB,PPT
	Week 7	Electroencephalograph (EEG),10-20 electrode placement system ,EEG readout device , Electromyograph (EMG) machine, Bio-feedback Instrumentation	3,4,	BB,PPT
	Week 8	Measurement of heart rate, blood pressure measurement, blood flow meter, blood gas analyzer, electromagnetic blood flow meter	1,2,3	BB,PPT

Week 9	Ultrasonic blood flow meter, NMR blood flow meter, blood gas analyzer.	3,4	BB,PPT
Week 10	X-ray machine, CT-Scan machine, MRI machine , Properties of ultrasound ,Ultrasonic fetal monitors	3,4,5	BB,PPT
Week 11	Echoencephalography, Echo-cardiograph., Colour Doppler ultrasound machine	3,4,5	BB,PPT
Week 12	Thermograph, endoscopy unit, Laser in medicine, Diathermy units, Cardiac Pacemaker	3.4	BB,PPT
Week 13	Physiological effects of electricity, important susceptibility parameters	5,6	BB,PPT
Week 14	Macro shock hazards, micro shock hazards, and basic approaches to protection against shock	5,6	BB,PPT
Week 15	Revision		BB,PPT

Name of Institute: Institute of Technology and Engineering Name of Faculty: Asst. Prof Miloni Ganatra

Course code: EC0719 Course name: Embedded Systems Pre-requisites: Microprocessor,DSP,Microcontroller and Interfacing Credit points: 4

Offered Semester: VII

Course Coordinator (weeks 12)

Full Name: Miloni Ganatra Department with sitting location: 2nd Floor, EEE lab 2 , Bhanwar Building Telephone: 9974592124 Email: miloniganatra.ee@indusuni.ac.in Consultation times: Monday,Tuesday 3:45 to 4:15pm ,All working Saturdays

Course Lecturer (weeks 12)

Full Name: Miloni Ganatra Department with siting location: 2nd Floor, EEE lab 2 , Bhanwar Building Telephone: 9974592124 Email: miloniganatra.ee@indusuni.ac.in Consultation times: Monday,Tuesday 3:45 to 4:15pm,All working Saturdays

Students will be contacted throughout the session via mail with important information relating to this course.

EC0719, Semester:VII (2021)

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1) To Introduce students to the Embedded system components.
- 2) To Understand the embedded system design constraint.
- 3) To introduce students to the ARM architecture and its programming.
- 4) To introduce students to the Real Time Operating System.
- 5) To introduce students to the Inter-process communication methods.

Course Outcomes (CO)

- 1) Define and explain embedded systems and the different embedded system design technologies explain the various metrics or challenges in designing an embedded system.
- 2) Discuss about optimizing single purpose processors. Discuss about the basic architecture and operation of general-purpose processors.
- 3) Explain about the basics of interrupts. Explain the different architectures like Round Robin. Describe the Real Time Operating System architecture.
- 4) Express tasks and states. Explain semaphores. Clarify about message queues, mailboxes, and pipes. Describe the process of effective memory management.
- 5) Explain encapsulating semaphores and queues. Discuss the considerations in hard real time scheduling. Delve into hardware software co design aspects in embedded systems.

Course Outline

UNIT -1

Introduction

Embedded system and general purpose computers, Embedded system components, Embedded System Design Process Classification of an embedded system, Examples of an embedded system Applications of an embedded system.

ARM Architecture

ARM Programming Model, Processor Modes, Registers, Exceptions, Interrupts & the vector table, Pipeline, 3-stage Pipeline ARM Organization, 5-stage Pipeline ARM Organization

UNIT-2

ARM Instruction set

Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software-Interrupt Instruction, Program status register instruction, Multiply instruction, Assembly language Programs

Thumb Instruction set

Thumb programmers model, Thumb branch instruction, Thumb software interrupt instruction, Thumb data process instruction, Thumb single register data transfer instruction, Thumb multiple register data transfer instruction, Thumb breakpoint instruction

UNIT-3

Interprocess communication and synchronization

Multiple process & thread in application, Task and task state, Task control block ,Task coding, Task scheduling, Semaphores for synchronization, Data sharing & deadlocks, Interprocess Communication

RTOS

UNIT-4

Operating system services, Process management, Timer & Event function, Memory management, Device, file, I/O subsystem management, Interrupt routine in RTOS environment and handling of interrupt service calls, Basic design using RTOS, RTOS task scheduling models, Interrupt latency and response of task & performance metrics, OS security issues

Method of delivery

(lectures, PPT, Chalkboard)

Study time

3 Hour's theory and 2 Hour's Practical session per week

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference)

(Blooms taxonomy has been given for reference)

PO	РО											
	· 1	2	3	4	5	6	7	8	9	10	11	12
1												
2												
3		\checkmark										
4		\checkmark										
5				V								

Figure 2: Knowledge retention

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Electronics and Communication Engineering Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has	1 Professional knowledge, grounding & awareness

developed and how it relates to other areas.	
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them effectively using a range of media. Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	6 Oral communication 7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work:

Sr.No	Title	Learning Outcomes

1	Write a Program to Blink LED's connected to STK – 2148 kit.	Able to Write Program for LPC2148 microcontroller.
2	Write a program to take input from push button switches SW1 to SW8 (connected from P1.16 to P1.23) and show its status on corresponding LED's D9 to D16 present on STK-2148.	Able to interface switch and LED with LPC2148
3	Write a program to interface relay withLPC2148.	Able to interface relay with LPC2148.
4	Write a program to display message on 16x2 Text LCD.	Able to interface 16x2 LCD with LPC2148.
5	Write a Program to transfer massage "Hello world!" serially at 19200-baud rate 8-bit data and 1 stop-bit using UART0.	Able to interface any serial communication- based devices with LPC2148.
6	Write a program to interface 4*4 matrix keypad.	Able to interface Keypad with LPC2148.
7	Write a program for on-chip ADC (ADC 0,Channel 1, and P0.28).	Able to interface any analog sensor with LPC2148.
8	Write a program to generate ramp wave using on-chip DAC (P0.25)	Able to convert form digital to analog using LPC2148.
9	Write a program to interface 128x64Graphics LCD.	Able to interface GLCD with LPC2148.
10	Write a program to display numbers on 7 segment displays using I2C protocol.	Able to interfacing 7 segment with LPC2148.

Lecture/tutorial times

(Give lecture times in the format below)

Example:

Lecture

Monday- 10:00 AM-11:00 AM

Thursday- 3:10 PM- 4:10 PM

Friday- 11.10AM- 12.10PM

Dreation

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

Text books

- 1. Raj Kamal, "Embedded System Architecture, Programming and Design", Tata McGraw-Hill, ISBN 13: 9780073404561
- 2. Steve Furber, "ARM System on Chip Architecture", Pearson Education, ISBN: 9788129711960
- 3. Wayne Wolf, "Computer as Components: Principles of Embedded Computing System Design", Morgan Kaufmann Publication
- 4. Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide Designing and Optimizing System Software", Morgan Kaufmann Publishers

Additional Materials

1. Embedded System Course (http://nptel.ac.in/courses/108102045/)

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Seminar Presentation -10 Marks

Quiz- 10 Marks

Example:

MSE (40 Marks)

ESE (40 Marks)

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction to Embedded System, Embedded system components, Embedded system design process classification	1,2	BB, PPT
Weeks 2	Examples of an Embedded systems, Applications of an Embedded System	1,2	BB, PPT
Week 3	Introduction to ARM architecture, Programming model, Registers	1,2	BB, PPT
Week 4	3-Stage pipeline, 5 stage pipeline, Interrupts	1,2	BB, PPT
Week 5	Hazards in the pipeline, ARM Instruction Set-Data Transfer instructions, Branch Instructions	2,3	BB, PPT
Week 6	Load and Store Instructions, Software-Interrupt Instructions, Assembly Language Programs	2,3	BB, PPT
Week 7	Thumb Instructions Set	2,3	BB, PPT
Week 8	Inter process Communications- Thread, Task	3,4	BB, PPT
Week 9	Semaphore, Scheduling, Deadlocks	3,4	BB, PPT
Week 10	Operating System Services, Process Management, Memory Management, Device, file, I/O Management	3,4	BB, PPT

Week 11	RTOS Environment, basic design using RTOS	5	BB, PPT
Week 12	RTOS Task scheduling models, Interrupt latency, OS security issues	5	BB, PPT

Name of Institute: INSTITUTE OF TECHNOLOGY & ENGINEERING Name of Faculty: Prof. Sejal Thakkar.

Course code: EC0733

Course name: Machine Learning Pre-requisites: NIL Credit points: 4 Offered Semester: III

Course Coordinator

Full Name: Sejal Thakkar Department with siting location: Computer Engineering (4rd floor,Faculty room, Bhanwar building) Telephone: 9033380982,7990552332 Email: sejalthakkar.ce@indusuni.ac.in Consultation times: Wednesday (4:00 PM to 5:00 PM)

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. Understand the key algorithms and theory that form the foundation of Machine Learning.
- 2. Understand a wide variety of learning algorithms.
- 3. Recognize the characteristics of machine learning that make it useful to real-world problems.
- 4. Understand how to perform evaluation of learning algorithms and model selection.
- 5. Develop skills of using recent machine learning software in order to solve practical problems.
- 6. Understand and learn state of the art machine learning techniques to provide employability in industry.

Course Outcomes (CO)

After successful completion of the course, student will able:

1. Get exposure of machine learning concepts and range of problems that can be handled by machine learning

- 2. Compare and parameterize different learning algorithms
- 3. Apply the machine learning concepts in real life problems
- 4. Understand learning in machines with different techniques
- 5. Understand and apply various recognition techniques.
- 6. Learn about parameter selection and feature extraction. Compare and parameterize different learning algorithms
- 7. Learn comparison of various algorithms

Course Outline

CNN, ANN, Regression, Classification

Method of delivery

- 1. Chalk & Talk
- 2. PPT presentation

Study time

3 lectures per week

2 hour labs per week

CO-PO Mapping (PO: Program Outcomes)

Course Outcome	Program Outcomes												Program Specific Outcomes		
0 4000000	PO PO10 PO11 PO12 1 2 3 4 5 6 7 8 9 PO10 PO11 PO12									PSO 1	PSO 2	PSO 3			
CO1											\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CO2			\checkmark										\checkmark		\checkmark
CO3				\checkmark			\checkmark				\checkmark	\checkmark	\checkmark		\checkmark
CO4	\checkmark		\checkmark								\checkmark		\checkmark		\checkmark
CO5												\checkmark	\checkmark	\checkmark	\checkmark
CO6													\checkmark		\checkmark
CO7								\checkmark					\checkmark		\checkmark

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department ofGraduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers	4 Problem solving skills

Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	
Effective communicators	5 Written communication
Articulate ideas and convey them effectively	6 Oral communication
using a range of media. Work collaboratively	7 Teamwork
and engage with people in different settings.	
Recognize how culture can shape	
communication.	
Responsible	10 Sustainability, societal & environmental
Understand how decisions can affect others	impact
and make ethically informed choices.	
Appreciate and respect diversity. Act with	
integrity as part of local, national, global and	
professional communities.	

Practical work:

(Mention what practical work this Course involves) As a part of practical, student have to perform various Python in machine learning project relevant activities.

Lecture/tutorial times

(Give lecture times in the format below)

For 3 Sem IT A and B

Monday:11 AM to 12 PM: LectureMonday:2 PM to 4: 10 PM: LaboratoryTuesday:11:10 AM to 12:10 PM: LectureWednesday:11:10 AM to 12:10 PM: LectureFriday:2 PM to 4:10 PM: Laboratory

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books

Text Book :

- 1. Compare and parameterize different learning algorithms
- 2. Compare and parameterize different learning algorithms

Additional Materials

Reference Book:

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Exan	Example:					
	Theory:Internal evaluation20% Objective (1-3-4)					
	10 marks as attendance 5 bonus for all students having attendance > 80%10 marks for assignment or case studies, limited to minimum 02 assignments per courseMid semester40% (due week 10)Objectives (2-5)Final exam (closed book)40%Objectives (1-5)					
	Practical: 20% for Internal Project 20% Lab file 20% Research related activities/Presentations 40% end semester project exam +Viva					

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

•

(Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction Learning Problems, designing a learning system, Issues with machine learning. Concept Learning, Version Spaces and Candidate Eliminations.	CO1	Chalk & Board , PPT
Weeks 2	Inductivebias, Supervised/Unsupervised Learning, Loss functions and generalization, Parametric vs Non-parametric methods, Evaluating Machine Learning algorithms and Model Selection	CO1, CO2	Chalk & Board , PPT
Week 3	Introduction to Statistical Learning Theory, Ensemble Methods, Bagging, Boosting, Random Forest	CO4	Chalk & Board , PPT
Week 4	Supervised Learning Regression/Classification) Basic methods: Distance-based methods, Nearest-Neighbors, Decision Trees, Naive Bayes, Linear models: Linear Regression, Logistic Regression, Generalized Linear Models.	CO3,CO4,CO5	Chalk & Board , PPT
Week 5	Support Vector Machines, Nonlinearity and Kernel Methods, Beyond Binary Classification: Multi-class/Structured Outputs, Ranking Unsupervised Learning Clustering: K-means/Kernel K-means, Dimensionality Reduction -PCA, CCA, LDA, ICA, MNF	CO4,CO5	Chalk & Board , PPT
Week 6	Canonical Variates - Feature Selection vs Feature Extraction, Generative Models (mixture models and latent factor models)	CO5	Chalk & Board , PPT

 		Ŭ	्रानेन प्रकाशते जगत् INDUS UNIVERSITY
Week 7	Bayesian Learning Bayes Theorem, Bayes Theorem and Concept Learning, Maximum Likelihood and Least squared Error Hypothesis, Maximum likelihood hypothesis for Predicting Probabilities.	CO2,CO3,CO5	Chalk & Board , PPT
Week 8	Minimum Description Length, Principle, Bayes Optimal Classifier, Gibbs Algorithm, Naïve Bayes, Classifier.	CO4, CO6	Chalk & Board , PPT
Week 9	Bayesian Belief Network, EM Algorithm, Case Study: Learning to classify text.	CO5	Chalk & Board , PPT
Week 10	Artificial Neural networks Neural Network Representation, Appropriate problems for Neural Network Learning, Perceptron, Multilayer Networks and Back Propagation,	CO2, CO3, CO5, CO7	Chalk & Board , PPT
Week 11	Algorithms, Remarks on Back Propagation Algorithms, Case Study: face Recognition Advanced topics Semi-supervised, Active Learning, Reinforcement Learning,	CO2, CO5, CO7	Chalk & Board , PPT
Week 12	Recent trends in various learning techniques of machine learning and classification methods, Overview of typical application areas, such as Recommender System.	CO2, CO5, CO7	Chalk & Board , PPT

PROGRAM MAP for Bachelor of Engineering (Electronics and Communication)

Name of Institute: Institute of Technology & Engineering

Name of Faculty: Omkar Pabbati Course code: EC0729

Course name: Wireless Communication

Pre-requisites: Analog & Digital Communication Credit points: 4 Offered Semester: 7th

Course coordinator (weeks 01 - 14)

Full name: Omkar Pabbati Department with siting location: Electronics & Communication Engineering Telephone:

Email: omkarpabbati.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Omkar Pabbati Department with siting location: Electronics & Communication Engineering Telephone:

Email: omkarpabbati.ec@indusuni.ac.in Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

- To Understand the era of wireless communication system
- Get the knowledge of all important concept of wireless systems
- Implement the propagation model for different environments
- Understand the working of today's GSM and CDMA architecture
- Know the recent trends in wireless communication systems

Course Outcomes (CO)

- 1. Characterize a wireless channel and evolve the system design specifications
- 2. Design a cellular system based on resource availability and traffic demands.
- 3. Implement various signaling schemes for fading channels.
- 4. Identify suitable signaling and multipath mitigation techniques for the wireless channel
- 5. Design and implement systems with transmit / receive diversity.

6. Analyze the performance of MIMO systems

Course Outline

Unit No.	Τορία	CS						
1	Eleme Gene Interf of Sei	Elements of Cellular Radio System Design Introduction of cellular system, General description of problem, Concept of frequency reuse channels, Interferences, Handoff mechanism, Umbrella concept, Trunking and Grade of Service, Techniques to improve coverage and capacity in cellular system						
2	Frequency Management and Channel Assignment Frequency management, Frequency-spectrum utilization, Set-up channels, Definition of channel assignment, Fixed channel assignment, Nonfixed channel assignment algorithms, Traffic and channel assignment, Value of implementing handoffs, Initiation of a handoff, delaying a handoff, Forced handoffs, power-difference handoffs, Mobile assisted handoff and soft handoff, Introduction to dropped call rate, Formula of dropped call rate							
3	³ Multiple access techniques and Propagation models of Mobile Radio FDMA TDMA, CDMA, OFDM, Radio wave propagation, Transmit and receive signa models, Free-Space path loss, Ray tracing, Empirical path-loss models Shadow fading,Combined pathloss and shadowing, Outage probabilit							
4 Digital Cellular Systems GSM architecture, GSM of coding, Location tracking and call setup, Supplementary service data, GSM location up Failure restoration, CDMA architecture, RAKE channel specifications, PDC,PHS,WCDMA,GPR Introduction to Wi-Fi, WiMAX, ZigBee Networks UWB radio, Wireless Adhoc network and mobile and challenges in a wireless network.		I Cellular Systems GSM architecture, GSM channel types, GSM speech g, Location tracking and call setup, security, Data services, ementary service data, GSM location update, Mobility databases, e restoration, CDMA architecture, RAKE receiver, Frequency and nel specifications, PDC,PHS,WCDMA,GPRS system architecture, fuction to Wi-Fi, WiMAX, ZigBee Networks, Software defined radio, radio, Wireless Adhoc network and mobile portability, Security issues hallenges in a wireless network.						
Text books:		 Mobile Cellular Telecommunications analog and digital systems, William C. Y. Lee. 2nd Edition, MGH. Wireless Communication", Theodore S. Rappaport, Prentice hall. 						
Reference Books/Note s		 Wireless and Mobile Network Architecture by YI-Bang Lin and Imrich Chlamtac, Wiley publication. "Wireless Communications and Networking ",Vijay Garg, Elsevier Mobile and personal Communication system and services by Rajpandya, IEEE press(PHI) 						

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time

3 hours per week Lectures

	PO 1	P 0 2	РО 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	P01 1	PO1 2
CO1	\checkmark		\checkmark		\checkmark				\checkmark			
CO2	\checkmark		\checkmark		\checkmark				\checkmark			
CO3	\checkmark				\checkmark				\checkmark			
CO 4	\checkmark		\checkmark		\checkmark				\checkmark			
CO5	\checkmark		\checkmark		\checkmark							
CO6	\checkmark	\checkmark	\checkmark		\checkmark							

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
	Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	& processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage	7 Teamwork

with people in different settings. Recognize how culture can shape communication.	
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Lecture/tutorial times

(Give lecture times in the format below)

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Text books

Mention in syllabus

Additional Materials

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Theory CIE 60 marks:

 a. Midsem exam: 40 Marks
 b. Assignment: 10 Marks
 c. Quiz: 10 Marks

 Practical CIE 60 marks:

 a. Experiment Performance 30 Marks
 b. File work + Skill Test 20 Marks

c. Internal Viva 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Elements of Cellular Radio System Design Introduction of cellular system, General description of problem, Concept of frequency reuse channels, Interferences, Handoff mechanism, Umbrella concept, Trunking	C01	Chalk and talk PowerPoint Presentations
Weeks 2	Grade of Service, Techniques to improve coverage and capacity in cellular system	CO1 CO2	Chalk and talk PowerPoint Presentations
Week 3	Frequency Management and Channel Assignment Frequency management, Frequency-spectrum utilization, Set-up channels, Definition of channel assignment, Fixed channel assignment, Nonfixed channel assignment algorithms,	CO1 CO3	Chalk and talk PowerPoint Presentations
Week 4	Traffic and channel assignment, Value of implementing handoffs, Initiation of a handoff, delaying a handoff, Forced handoffs,	CO2	Chalk and talk PowerPoint Presentations
Power-difference handoffs, Mobile assisted handoff and soft Week 5 handoff, Introduction to dropped call rate, Formula of dropped call rate		CO1 CO3	Chalk and talk PowerPoint Presentations
Week 6	Multiple access techniques and Propagation models of Mobile Radio	CO2 CO3	Chalk and talk PowerPoint

			ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
	FDMA, TDMA, CDMA, OFDM, Radio wave propagation,		Presentations
Week 7	Transmit and receive signal models, Free-Space path loss, Ray tracing, Empirical path- loss models, Shadow fading,	CO3 CO5	Chalk and talk PowerPoint Presentations
Week 8	Combined pathloss and shadowing, Outage probability under path loss and shadowing, cell coverage area.	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 9	GSM architecture, GSM channel types, GSM speech coding, Location tracking and call setup, security, Data services, Supplementary service data, GSM location update, Mobility databases,	CO2 CO3	Chalk and talk PowerPoint Presentations
Week 10	Failure restoration, CDMA architecture, RAKE receiver, Frequency and channel specifications,	CO2 CO5	Chalk and talk PowerPoint Presentations
Week 11	PDC,PHS,WCDMA,GPRS system architecture,	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 12	Introduction to Wi-Fi, WiMAX, ZigBee Networks, Software defined radio, UWB radio	CO4 CO5	Chalk and talk PowerPoint Presentations
Week 13	Wireless Adhoc network and mobile portability, Security issues and challenges in a wireless network.	C05	Chalk and talk PowerPoint Presentations
Week 14	Revision	C05	Chalk and talk PowerPoint Presentations

Program map for B.Tech (Electronics & Communication Engineering)

Name of Institute: Indus Institute of Technology & Engineering Name of Faculty: Prof. Zalak Patel

Course code: EC0721

Course name: Antenna & Wave Propagation

Pre-requisites: Electromagnetic, Microwave Engineering Credit points: 04 Offered Semester: 6th

Course Coordinator (weeks 15)

Full Name: Prof. Zalak Patel Department with sitting location: EC (Antenna & Microwave Lab), Bhanwar Building Telephone: 3203 Email: zalakpatel.ec@indusuni.ac.in Consultation times: 3:30 to 4:15 PM

Course Lecturer (weeks 15)

Full Name: Prof. Zalak Patel Department with sitting location: EC (Antenna & Microwave Lab), Bhanwar Building Telephone: 3203 Email: zalakpatel.ec@indusuni.ac.in Consultation times: 3:30 to 4:15 PM

Students will be contacted throughout the Session via Mail with important information relating to this Course.

Course Objectives

By participating in and understanding all facets of this Course a student will:

- 1. The objective of this subject is to deliver an in-depth knowledge of the basic antennas and their applications.
- 2. To give the practical design consideration and simulation of various antennas for different applications.
- 3. To cover the basic theoretical concepts for the radio wave propagation.

Course Outcomes (CO)

After completion of this course, expected outcome from the students,

1. To understand the different types of antennas and the radiation mechanism.

Miscellaneous Antennas

- 2. To evaluate the fundamental parameters of antennas and arrays of antennas.
- 3. To acquire ability to design various types of linear and planar antennas.
- 4. To understand the atmospheric and terrestrial effects on radio wave propagation.

Course Outline

(Key in topics to be dealt)

UNIT-I

Overview of antennas

Definitions, Types of Antennas & applications, Current distribution on a thin wire antenna, Radiation mechanism, Antenna parameters, radiation pattern, antenna field zones, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half-power beamwidth, first null beamwidth, beam efficiency, bandwidth, polarization, input impedance, antenna radiation efficiency, antenna effective area, Friss transmission equation.

UNIT-II

Radiation integral

Vector potential A and F for Electric & Magnetic current sources | & M, E and H field for electric and magnetic current sources, Far field radiation, reciprocity theorem, radiation form current element and dipole, radiation patterns of different dipoles, radiation power density, radiation resistance & directivity of dipole.

UNIT-III

Antenna Arrays

Two-element array, N-element linear array- Uniform amplitude & spacing, array/space factor, broadside array, end-fire array, N-element linear array-Uniform spacing & non uniform amplitude, planar array, introduction to active phased (scanning) array and adaptive arrays.

Wave Propagation

Ground wave propagation, terrain and earth curvature effects, tropospheric propagation, fading, diffraction and scattering, ionospheric propagation, refractive index, critical frequencies, maximum usable frequency, effects of magnetic field.

UNIT-IV

[10 hours]

[12 hours]

[12 hours]

[10 hours]

Huygen's Field Equivalence Principle, Babinet's principle, Slot Antennas, Horn

PO						Ρ	0					
C0	1	2	3	4	5	6	7	8	9	10	11	12
1							\checkmark					
2							\checkmark					
3		\checkmark										
4												

Antennas, Reflector Antennas, Micorstrip Patch Antennas, Helical Antennas, Loop Antennas.

Method of delivery

(Face to face lectures, self study material, Active Learning Techniques)

Study time

(5 hours per week including class attendance)

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention(For reference) (Blooms taxonomy has been given for reference)

Figure 1: Blooms Taxonomy

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
	Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	& processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media. Work collaboratively and engage	7 Teamwork

with people in different settings.	
Recognize how culture can shape	
communication.	
Responsible	10 Sustainability, societal &
Understand how decisions can affect	environmental impact
others and make ethically informed	
choices. Appreciate and respect	
diversity. Act with integrity as part	
of local, national, global and	
professional communities.	

Practical work:

(Mention what practical work this Course involves)

Experime	Title	Learning Outcomes
nt. No.		
1	To study the variation of field strength with respect to distance from transmitting antenna.	To understand the relationship between the field strength and distance from the transmitting antenna.
2	Demonstrate that the transmitting and receiving radiation pattern of an antenna are equal; therefore confirm the reciprocity theorem of antennas.	To understand the reciprocity theorem for Antennas and their radiation patterns.
3	To plot the radiation pattern of an Omni directional antenna.	To acquire the basic understanding of Omnidirectional antennas and to plot its radiation pattern on polar graph.
4	To plot radiation pattern of directional antenna.	To acquire the basic understanding of Omnidirectional antennas and to plot its radiation pattern on polar graph.
5	To study and plot the radiation pattern of the helical antennas and measure Gain and Beam width.	To calculate the gain and beamwidth of helical antenna from its measured radiation pattern.
6	To study and plot the radiation pattern of the Broadside array and measure Gain and Beam width.	To calculate the gain and beamwidth of broadside array antenna from its measured radiation pattern.
7	Design and simulate dipole antenna in HFSS.	To determine the design parameters of dipole antenna

		and to observe its far field radiation pattern.
8	Design and simulate conical horn antenna in HFSS.	To determine the design parameters of conical horn antenna and to observe its far field radiation pattern.
9	Design and simulate Microstrip antenna in HFSS.	To determine the design parameters of Microstrip patch antenna and to observe its far field radiation pattern.
10	Mini Project	

Lecture/tutorial times

Lecture	Monday	9.55 - 10.55 am	Room LH 22
Lecture	Tuesday	1.30 - 2.25 pm	Room LH 22
Lecture	Friday	9.00 9.55 pm	Room LH 22
Tutorial	Tuesday	11.00 - 12.50 pm	EC lab 4
Tutorial	Friday	2.25 - 4.15 pm	EC lab 4
Practical	Thursday	9.00 - 10.55 am	EC lab 4
Practical	Friday	11.00 - 12.50 p	m EC lab 4

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the Course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for mid and end semester examinations.

Details of referencing system to be used in written work

Text books 1. Antenna Theory: Analysis and Design, 3rd Edition, C A Balanis, Wiley <u>Publication.</u> 2. Antennas, J D Krauss, Mcgraw-Hill Higher Education.

Additional Materials

Reference Books

1. Electromagnetic Wave and Radiating Systems, Edward C. & Balmain, Keith G. Jordan. Prentice Hall of India.

2. Electronic and Radio Engineering, F.E. Terman, McGraw-Hill, 4th edition, 1955.

Web Resources

- 1. http://nptel.ac.in/courses/117107035/
- 2. https://www.tutorialspoint.com/antenna_theory/
- 3. http://www.radio-electronics.com/info/antennas/
- 4. http://nptel.ac.in/courses/108101092/

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Example:		
Quiz 1	10% (week 4)	Objective (1-3)
Class Test	10% (week 6)	Objective (1-4)
Seminar	10% (week 8)	Objective
(1-4)		-
Mid semester	30% (due week	10) Objectives (2-
5)		-
Final exam (<i>closed book</i>)	40%	Objectives (1-5)

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in mid semester or end semester will be considered for supplementary assessment in the respective components (i.e mid semester or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (mid semester or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (Antenna & Wave Propagation) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Definitions, Types of Antennas & applications, Current distribution on a thin wire antenna, Radiation mechanism, Antenna Performance parameters.	1	BB, PPT
Weeks 2	Radiation pattern, antenna field zones, radiation power density, radiation intensity, directivity, gain, antenna efficiency, half- power beamwidth, first null beamwidth, beam efficiency.	1,2	BB, PPT
Week 3	Bandwidth, polarization, input impedance, antenna radiation efficiency, antenna effective area, Friss transmission equation.	1,2	BB, PPT
Week 4	Vector potential A and F for Electric & Magnetic current sources J & M, E and H field for electric and magnetic current sources,	2	BB, PPT
Far field radiation, reciprocity theorem, Radiation formWeek 5current element and dipole, radiation patterns of different dipoles.		2	BB, PPT
Week 6	Derivation of radiation power density, radiation resistance & directivity of infinitesimal & small dipole antenna.	2	BB, PPT
Week 7	Two-element array, N-element linear array- Uniform amplitude & spacing, array/space factor.	2	BB, PPT
Week 8	Broadside array, end-fire array, N-element linear array- Uniform spacing & non uniform	2	PPT

	amplitude,		
Week 9	Planar array, introduction to active phased (scanning) array and adaptive arrays.	2	BB, PPT
Week 10	Ground wave propagation, terrain and earth curvature effects, tropospheric propagation, fading, diffraction and scattering, Space wave propagation.	3	BB, PPT
Week 11	lonospheric propagation, refractive index, critical frequencies, maximum usable frequency, effects of magnetic field.	3	BB, PPT
Week 12	Huygen's Field Equivalence Principle, Babinet's principle, Slot Antennas, Helical Antennas, Loop Antennas.	3	BB, PPT
Week 13	E-plane sectoral horn, aperture fields, H-plane sectoral horn, aperture fields, pyramidal horn, conical horn, corrugated horn.	4	BB, PPT
Week 14	Plane reflector, corner reflector, parabolic reflector, front fed parabolic reflector, dual symmetrical and offset reflectors (Cassegrain & Gregorian antenna).	4	BB, PPT
Week 15	Basics of microstrip antennas, different types, advantages and disadvantages & applications, meta materials, fractal antennas, surface wave antenna.	4	BB, PPT

`

PROGRAM MAP FOR B.Tech. (ELECTRONICS & COMMUNICATION ENGINEERING)

Ist Year						
		_				Basic Electronics
					23	\square
3dimeter	Different Constant form	Beatheatae	an Constituent	Domo when Appelment (Date		China and a spin propriet
2nd Vane				101.4		
THO TON		Laure Erestu Serbasu				Beally um dage
1th Someter	Ermit E	2014 I		any Egin. COM-1		
Sth.Semanter		time t	**************************************	-		na alt
Jed Year			F	Electro I	Elecive I	
	* *	A Vista Dage and			Ender and Assignment Coller	Comment Textured
60k Esmator				Free Courses (22.11.16	Day Summer Suite State	
\succ						
	Cadedial 3,000 30000	** *	(*******************************	·····		CTPS
7th Samartar					rephysical Carrier's James, CEPP	
4th Year				Easpharty professory	warmen (ADDCCarrie) CCPID	
						05

Name of Institute: Institute of Technology & Engineering Name of Faculty: Prof. Hardik Prajapati

Course code: EC0707

Course name: Cryptography & Cyber Security

Pre-requisites: Modular Arithmetic, Basic concepts of Computer Network Credit points: IV Offered Semester: VII

Course coordinator

Full name: Prof. Hardik Prajapati Department with siting location: Electronics & Communication Dept., EC Lab -1, Bhanwar Building Telephone: M: 9099374230, Extension: 3113 Email: hardikprajapati.ec@indusuni.ac.in Consultation times: Monday to Friday : 4:00 to 5:00 PM

Course lecturer

Full name: Prof. Hardik Prajapati Department with siting location: Electronics & Communication Dept., EC Lab -1, Bhanwar Building Telephone: M: 9099374230, Extension : 3113 Email: hardikprajapati.ec@indusuni.ac.in Consultation times: Monday to Friday : 4:00 to 5:00 PM

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1. Describe, apply and analyze basic network concepts emphasizing series and parallel combination of passive components, source transformation and shifting.
- 2. Describe, apply and analyze use of mesh and nodal techniques for formulating the transfer function of networks.
- 3. Apply and analyze various network theorems in solving the problems related to electrical circuits.

4. Describe and analyze two port networks and methods of analyzing the electrical networks.

Course Outcomes (CO)

- 1. Explain and make practical use of the concepts, principles and mechanisms for providing security to the information/data.
- 2. Select the optimum security protocol according to application requirement.
- 3. Design security model of application level and network level security.
- 4. Design encryption algorithms.

Course Outline

UNIT-I

Introduction

OSI Security Architecture, Classical Encryption techniques, Cipher Principles, Cryptography, Cryptanalysis and Attacks; Substitution and Transposition techniques

Symmetric Key Cryptography:

Stream ciphers and block ciphers, Block Cipher structure, Feistel Cipher, Diffusion and Confusion, Data Encryption standard (DES) with example, strength of DES, Design principles of block cipher, AES, Multiple encryption and triple DES, Electronic Code Book, Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode, RC4 algorithm, Confidentiality using Symmetric encryption, Key Distribution, Random Number Generator.

UNIT II

Public Key Cryptography:

Key Management, Diffie-Hellman key Exchange, Elliptic Curve Architecture and Cryptography, Introduction to Number Theory, Confidentiality using Symmetric Encryption, Public Key Cryptography and RSA.

Message Authentication and Hash Functions:

Authentication Requirements, Authentication Functions, MAC, Hash Functions, Security of Hash Functions and MACs, Secure Hash Algorithm, MD5.

UNIT III

Digital Signatures and Authentication Applications :

Authentication Protocols, Kerberos, DSS, X.509 Authentication Service, Digital Signatures

Network Security:

PGP, S/MIME, IPSec Architecture, Authentication Header, ESP, Combining Security Association, Key Management, Web Security Consideration, SSL and TLS, Introduction to E-Commerce, Secure Electronic Transaction (SET).

UNIT IV

System Level Security:

Intrusion detection, Password management, Viruses and related Threats, Virus Counter measures, Firewall Design Principles, Trusted Systems, DDOS attack, Smart Cards and Security, Zero Knowledge Protocol, Database Access Control.

Method of delivery

Lectures, Power Point Slides, Tutorial, Quiz, Test

Study time

5 Hours Per week

	PO 1	РО 2	PO 3	РО 4	РО 5	РО 6	РО 7	РО 8	РО 9	PO1 0	PO1 1	PO1 2
CO 1	3	1	1	-	-	-	-	-	-	-	-	1
CO 2	3	2	3	1	3	-	-	-	-	-	-	-
CO 3	3	2	2	2	3	-	-	-	-	-	-	-
CO 4	2	2	1	-	-	-	-	-	-	-	-	1
CO 5	3	2	3	1	3	-	-	-	-	-	-	-

CO-PO Mapping (PO: Program Outcomes)

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Subject: Cryptography & Cyber Security (EC0716)

Graduate Qualities and Capabilities covered

(Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of
	Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas. Independent learners Engage with new ideas and ways of	1 Professional knowledge, grounding & awareness 2 Information literacy, gathering
thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	& processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
effectively using a range of media.	7 Teamwork

Subject: Cryptography & Cyber Security (EC0716)

Semester: VII (2021)

Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Practical work: No Practical

Г

Lecture/tutorial times

|--|

Attendance Requirements

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

Text Books:

William Stallings, "Cryptography and Network Security – Principles and Practices", Pearson Education, ISBN: 9780133354690

Reference Books:

1. Bruce Schneier, "Applied Cryptography", John Wiley & Sons Inc, ISBN-13: 978-0471117094

2. Atul Kahate, "Cryptography and Network Security", Tata McGraw-Hill, ISBN: 9781259029882

Additional Materials:

PPTs of all units will be provided.

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

Test 1	20%	
Test II	20%	
Assignment 1	20%	
Final exam (closed book)	40%	

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

No practical

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of -% of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students. Do not share your work with other students (except where required for a group activity or assessment)

Course schedule (subject to change)

.

Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)
Weeks 1	Introduction: OSI Security Architecture, Classical Encryption techniques, Cipher Principles, Cryptography, Cryptanalysis and Attacks; Substitution and Transposition techniques	1	Lecture & Tutorial
Weeks 2	SymmetricKeyCryptographyStream ciphers and blockciphers, Block Cipher structure,Feistel Cipher, Diffusion andConfusion,	1,2	Lecture & Tutorial
Week 3	Data Encryption standard (DES) with example, , strength of DES, Design principles of block cipher, AES, Multiple encryption and triple DES, Electronic Code Book	1,2	Lecture , Tutorial & Test
Week 4	Cipher Block Chaining Mode, Cipher Feedback mode, Output Feedback mode, Counter mode, RC4 algorithm, Confidentiality using Symmetric encryption, Key Distribution, Random Number Generator, Test	2,3	Lecture & Tutorial
Week 5	Public Key CryptographyKeyManagement,Diffie-Hellman key Exchange,EllipticCurveArchitectureandCryptography,IntroductiontoNumberTheory,ConfidentialityusingSymmetricEncryption	1,3	Lecture & Tutorial
Week 6	Public Key Cryptography and RSA, Authentication Requirements, Authentication Functions, MAC, Hash Functions, Security of Hash	1,4	Lecture , Tutorial & Test

Subject: Cryptography & Cyber Security (EC0716)

				ज्ञानेन प्रकाशते जगत् INDUS UNIVERSITY
		Functions and MACs, Secure Hash Algorithm, MD5, Test		
	Week 7	Authentication Protocols, Kerberos, DSS, X.509 Authentication Service, Digital Signatures	1,4	Lecture & Tutorial
	Week 8	PGP, S/MIME, IPSec Architecture, Authentication Header, ESP, Combining Security Association, Key Management	1,4	Lecture & Tutorial
	Week 9	Web Security Consideration, SSL and TLS, Introduction to E- Commerce, Secure Electronic Transaction (SET), Test	1	Lecture , Tutorial & Test
	Week 10	Intrusion detection, Password management, Viruses and related Threats, Virus Counter measures, Firewall Design Principles	5,6	Lecture & Tutorial
	Week 11	Trusted Systems, DDOS attack, Smart Cards and Security, Zero Knowledge Protocol, Database Access Control	5,6	Lecture & Tutorial
	Week 12	Revision , Test	5,6	Lecture & Tutorial

Program map for B.Tech (Electronics & Communication Engineering)

Subject: Cryptography & Cyber Security (EC0716)

Semester: VII (2021)

Subject: Cryptography & Cyber Security (EC0716)

Name of Institute: Institute of Technology & Engineering Name of Faculty: Prof.Zalak Patel

Course code:EC0728

Course name: Robotics

Pre-requisites: Mathematics, Physics, Programming Skills Credit points: 3 Offered Semester: 7th

Course coordinator (weeks 01 - 14)

Full name: Prof. Zalak Patel Department with siting location: Electronics & Communication Engineering Telephone: 7878452549

Email: <u>zalakpatel.ec@indusuni.ac.in</u> Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Course lecturer (weeks 01 - 14)

Full name: Prof. Zalak Patel Department with siting location: Electronics & Communication Engineering Telephone: 7878452549 Email: <u>zalakpatel.ec@indusuni.ac.in</u> Consultation times: 09.00 AM – 10.00 AM (Working Saturdays)

Students will be contacted throughout the session via mail with important information relating to this course.

Course Objectives

By participating in and understanding all facets of this course a student will:

- 1. To describe the history and early beginning of robotics.
- 2. Aims to develop the understanding of Robotics Components.
- 3. To apply creative approaches to practical applications, identify technological opportunities in robotics.
- 4. To impart knowledge about the engineering aspects of Robots and their applications.

Course Outcomes (CO)

At the end of this subject, students should be able to:

1. Demonstrate use of engineering methods and problem solving towards design of the specified robot.

2. Compare and contrast various mechanical systems.

- 3. Describe Robot control & its applications.
- 4. The students will be able to analyse and design robotic structures.

Course Outline

Unit No.	Topics							
1	Introduction- Robot anatomy-Definition, law of robotics, History and characteristics of Robots-precision, accuracy and repeatability.							
	Robotic arm – Robot joints and links, Robot classifications, Areas of application, Architecture of robotic systems.							
	End effectors - Mechanical grippers-Slider crank mechanism, Screw type, cam type-Magnetic grippers- Vacuum grippers-Air operated grippers- Gripper force analysis-Gripper design-Simple problems							
2	Transformation types - 2D, 3D. Translation- Homogeneous coordinates multiple transformation-Simple problems.							
	Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors Robotic vision sensor-Force sensor-Light sensors, Pressure sensors							
	Actuators - Specification, principle of operation and areas of application of: Stepper motor, Servo motor and brushless DC motor. Microprocessor control of electric motors, speed control using PWM and direction control using H- Bridge							
3	Robotic vision systems- Imaging, Sensing and Digitization, Image processing techniques, Areas of application in robotics.							
	Introduction to kinematics- Position and orientation of objects, Rotation, Euler angles, Rigid motion representation using Homogenous Transformation matrix.							
	Forward kinematics- Link coordinates, Denavit-Hartenberg Representation, Application of DH convention to different serial kinematic arrangements fitted with spherical wrist.							
	Inverse kinematics – General properties of solutions, Kinematic Decoupling, Inverse kinematic solutions for all basic types of three-link robotic arms fitted with a spherical wrist.							

4	Velocity kinematics – Derivation of the Jacobian, Application of v kinematics for serial manipulators, importance of Singularities.							
	Manip equat contro contro	ator Dynamics - Introduction to Legrangian mechanics and Dynamic for 2 Degree of Freedom (DOF) robots, Introduction to position and force control of robotic manipulators,Robot actuation and using PID controllers.						
	Programming – Programming methods, Robot language classification, language structure, elements and its functions. Motion, End-effecter sensor commands in VAL programming language. Simple programs. trial applications of Robots in material handling and assembly. Mobile s, Recent developments in Robotics.							
Text		1. Mikell and Groover, Industrial Robotics – Technology,						
books	:	Programming and Applications, McGraw Hill, 2/e, 2012.						
		2. Introduction to Robotics by J.J. Craig, Addison-Wesley Publishing						
		Company, 1986.						
		3. Saeed B. Niku Introduction to Robotics. Analysis and control,						
		applications- Wiley student edition, 2010.						
		4. K.S.FU, R.C. GONZAIEZ, CSG LEE-RODOTICS CONTROL, SENSING, VISION						
		& Intelligence, McGraw-Hill.						
		δ. Sons 1990						
		Bobert L Schilling Fundamentals of Robotics: Analysis & Control						
Refere	ence	Pearson Education. 2000.						
Books	/Note	2. Fundamentals of Robotics by D.K. Pratihar, Narosa Publishing						
s		House, New-Delhi, 2017.						
		3. Ashitava Ghosal, Robotics, Fundamental concepts and analysis,						
		OXFORD University Press, 2006						
		4. S. Sitharama Iyengar, Alberto Elefes-Autonomous Mobile Robots						
		Control, Planning & Achitecture, IEEE Computer Society Press						
		5. KIATTER, K.D., CHMIEIEWSKI, I.A, NEGIN, M, RODOTIC Engineering An						
		Integrated Approach, PHI, 2007.						
		McGraw Hill New Delhi 1994						

Method of delivery

- 1. Chalk and talk
- 2. PowerPoint Presentations
- 3. Self-study material
- 4. NPTEL notes

Study time

3 hours per week Lectures

CO-PO Mapping (PO: Program Outcomes)

	P 0 1	РО 2	РО 3	РО 4	РО 5	РО 6	РО 7	PO 8	РО 9	PO1 0	PO1 1	PO1 2
CO1	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO2	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO3	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO4	\checkmark	\checkmark	\checkmark		\checkmark				\checkmark			
CO5	\checkmark	\checkmark	\checkmark		\checkmark						\checkmark	

Blooms Taxonomy and Knowledge retention (For reference) (Blooms taxonomy has been given for reference)

Graduate Qualities and Capabilities covered (Qualities graduates harness crediting this Course)

General Graduate Qualities	Specific Department of Graduate Capabilities
Informed Have a sound knowledge of an area of study or profession and understand its current issues, locally and internationally. Know how to apply this knowledge. Understand how an area of study has developed and how it relates to other areas.	1 Professional knowledge, grounding & awareness
Independent learners Engage with new ideas and ways of thinking and critically analyze issues. Seek to extend knowledge through ongoing research, enquiry and reflection. Find and evaluate information, using a variety of sources and technologies. Acknowledge the work and ideas of others.	2 Information literacy, gathering & processing
Problem solvers Take on challenges and opportunities. Apply creative, logical and critical thinking skills to respond effectively. Make and implement decisions. Be flexible, thorough, innovative and aim for high standards.	4 Problem solving skills
Effective communicators	5 Written communication
Articulate ideas and convey them	6 Oral communication
Work collaboratively and engage with people in different settings. Recognize how culture can shape communication.	7 Teamwork
Responsible Understand how decisions can affect others and make ethically informed choices. Appreciate and respect diversity. Act with integrity as part of local, national, global and professional communities.	10 Sustainability, societal & environmental impact

Lecture/tutorial times

(Give lecture times in the format below)

Online class Time Table

The University norms states that it is the responsibility of students to attend all lectures, tutorials, seminars and practical work as stipulated in the course outline. Minimum attendance requirement as per university norms is compulsory for being eligible for semester examinations.

Details of referencing system to be used in written work

- 1. Text Books and Reference Books
- 2. Online Resources

Additional Materials

- 1. <u>https://nptel.ac.in/courses/112/105/112105249/</u>
- 2. <u>http://vlabs.iitkgp.ernet.in/mr/index.html#</u>

ASSESSMENT GUIDELINES

Your final course mark will be calculated from the following:

- 1. Theory CIE 60 marks:
- a. Midsem exam: 40 Marks
- b. Assignment: 10 Marks
- c. Quiz: 10 Marks

SUPPLEMENTARY ASSESSMENT

Students who receive an overall mark less than 40% in internal component or less than 40% in the end semester will be considered for supplementary assessment in the respective components (i.e internal component or end semester) of semester concerned. Students must make themselves available during the supplementary examination period to take up the respective components (internal component or end semester) and need to obtain the required minimum 40% marks to clear the concerned components.

Practical Work Report/Laboratory Report:

A report on the practical work is due the subsequent week after completion of the class by each group.

Late Work

Late assignments will not be accepted without supporting documentation. Late submission of the reports will result in a deduction of 10 % of the maximum mark per calendar day

Format

All assignments must be presented in a neat, legible format with all information sources correctly referenced. Assignment material handed in throughout the session that is not neat and legible will not be marked and will be returned to the student.

Retention of Written Work

Written assessment work will be retained by the Course coordinator/lecturer for two weeks after marking to be collected by the students.

University and Faculty Policies

Students should make themselves aware of the University and/or Faculty Policies regarding plagiarism, special consideration, supplementary examinations and other educational issues and student matters.

Plagiarism - Plagiarism is not acceptable and may result in the imposition of severe penalties. Plagiarism is the use of another person's work, or idea, as if it is his or her own - if you have any doubts at all on what constitutes plagiarism, please consult your Course coordinator or lecturer. Plagiarism will be penalized severely.

Do not copy the work of other students.

Do not share your work with other students (except where required for a group activity or assessment)

.

Course schedule (subject to change) (Mention quiz, assignment submission, breaks etc as well in the table under the Teaching Learning Activity Column)

	Week #	Topic & contents	CO Addressed	Teaching Learning Activity (TLA)					
	Weeks 1	Robot anatomy- Definition, law of robotics, History and characteristics of Robots- precision, accuracy and repeatability.	CO1, CO3	Chalk and talk PowerPoint Presentations					
	Weeks 2	Robotic arm – Robot joints and links, Robot classifications, Areas of application, Architecture of robotic systems	CO1, CO3	Chalk and talk PowerPoint Presentations					
	Week 3	Mechanical grippers-Slider crank mechanism, Screw type, cam type-Magnetic grippers- Vacuum grippers-Air operated grippers-Gripper force analysis- Gripper design-Simple problems.	CO2	Chalk and talk PowerPoint Presentations					
	Week 4	Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors Robotic vision sensor-Force sensor-Light sensors, Pressure sensors	CO1, CO3	Chalk and talk PowerPoint Presentations					
	Week 5	Actuators - Specification, principle of operation and areas of application of: Stepper motor, Servo motor and brushless DC motor.	CO1, CO3	Chalk and talk PowerPoint Presentations					
	Week 6	Microprocessor control of electric motors, speed control using PWM and direction control using H- Bridge	CO3	Chalk and talk PowerPoint Presentations					
	Week 7	Robotic vision systems- Imaging, Sensing and Digitization, Image processing techniques, Areas of	CO3	Chalk and talk PowerPoint Presentations					

			बानेन प्रकाशते जगत् INDUS UNIVERSITY
	application in robotics.		
Week 8	Introduction to kinematics- Position and orientation of objects, Rotation, Euler angles, Rigid motion representation using Homogenous Transformation matrix.	CO2	Chalk and talk PowerPoint Presentations
Week 9	Forward kinematics- Link coordinates, Denavit- Hartenberg Representation, Application of DH convention to different serial kinematic arrangements fitted with spherical wrist.	CO2	Chalk and talk PowerPoint Presentations
Week 10	Inverse kinematics – General properties of solutions, Kinematic Decoupling, Inverse kinematic solutions for all basic types of three-link robotic arms fitted with a spherical wrist.	CO2	Chalk and talk PowerPoint Presentations
Week 11	Velocity kinematics – Derivation of the Jacobian, Application of velocity kinematics for serial manipulators, importance of Singularities.	CO2	Chalk and talk PowerPoint Presentations
Week 12	Manipulator Dynamics - Introduction to Legrangian mechanics and Dynamic equation for 2 Degree of Freedom (DOF) robots, Introduction to position control and force control of robotic manipulators,Robot actuation and control using PID controllers.	CO2	Chalk and talk PowerPoint Presentations
Week 13	Robot Programming – Programming methods, Robot language classification, Robot language structure, elements and its functions. Motion, End- effecter and Sensor commands in VAL programming language.	C04	Chalk and talk PowerPoint Presentations
Week 14	Simple programs. Industrial applications of Robots in material handling and assembly. Mobile robots, Recent developments in	CO4	

Program map for B.Tech (Electronics & Communication Engineering)

